
SQL Puzzles: Evaluating Micro Parsons Problems With Diferent
Types of Feedback as Practice for Novice Programmers

Zihan Wu Barbara J. Ericson
ziwu@umich.edu barbarer@umich.edu

University of Michigan University of Michigan
Ann Arbor, Michigan, United States Ann Arbor, Michigan, United States

ABSTRACT
This paper investigates using micro Parsons problems as a novel
practice approach for learning Structured Query Language (SQL).
In micro Parsons problems learners arrange predefned code frag-
ments to form a SQL statement instead of typing the code. SQL is a
standard language for working with relational databases. Targeting
beginner-level SQL statements, we evaluated the efcacy of micro
Parsons problems with block-based feedback and execution-based
feedback compared to traditional text-entry problems. To delve into
learners’ experiences and preferences for the three problem types,
we conducted a within-subjects think-aloud study with 12 partici-
pants. We found that learners reported very diferent preferences.
Factors they considered included perceived learning, task authentic-
ity, and prior knowledge. Next, we conducted two between-subjects
classroom studies to evaluate the efectiveness of micro Parsons
problems with diferent feedback types versus text-entry problems
for SQL practice. We found that learners who practiced by solving
Parsons problems with block-based feedback had a signifcantly
higher learning gain than those who practiced with traditional
text-entry problems.

CCS CONCEPTS
• Human-centered computing → Interactive systems and tools; •
Applied computing → Interactive learning environments; •
Social and professional topics → Computing education.

KEYWORDS
programming puzzle, empirical study, SQL education, learning

ACM Reference Format:
Zihan Wu and Barbara J. Ericson. 2024. SQL Puzzles: Evaluating Micro
Parsons Problems With Diferent Types of Feedback as Practice for Novice
Programmers. In Proceedings of the CHI Conference on Human Factors in
Computing Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3613904.3641910

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0330-0/24/05
https://doi.org/10.1145/3613904.3641910

1 INTRODUCTION
Managing databases with Structured Query Language (SQL) is an
important skill for students in the feld of computer science, soft-
ware engineering, and information systems [33]. SQL is a domain-
specifc language used in relational database management systems
(RDBMS). The functionality of SQL includes data type defnition,
data query, data manipulation, and data access control [6]. Be-
cause of its importance, SQL is explicitly recommended in many
higher education curricula guidelines along with databases. How-
ever, teaching SQL is difcult as it requires both subject knowledge
and pedagogical skills. A systematic literature review by Taipalus
and Seppanen [33] on 89 research papers related to teaching SQL
summarized 66 teaching approaches for instructors.

Many interactive environments are available nowadays for learn-
ers to practice SQL. However, they mostly involve typing SQL
statements [1, 5, 28]. This is a type of whole task, which while
authentic, can overload memory and impede learning [32]. Prior
work has also designed block-based programming languages for
SQL [16, 26, 30], which provide visual interfaces and enable drag-
and-drop interactions for beginners, but still contain block banks
for all available keywords and code structures for every question.
Searching through all available blocks to fnd the appropriate one
can still overwhelm the learners. Completion problems that re-
quire learners to complete partial solutions can prevent cognitive
overload [32, 34].

In introductory programming education, Parsons problems are a
type of completion problem that provide mixed-up solution code in
blocks for learners to reconstruct the correct answer by rearranging
the order of the blocks [25]. Designed to maximize engagement,
model good code, and provide immediate feedback [25], Parsons
problems have been found to improve problem-solving efciency
[10] and promote programming pattern acquisition [35], while
maintaining equivalent learning gains compared with writing code
from scratch [10, 35]. In traditional Parsons problems, each block
contains a single or multiple lines of code. A recent study intro-
duced micro Parsons problems, which implemented the idea of
Parsons problems at a smaller granularity [40]. A micro Parsons
problem provides blocks of code line fragments, and asks learners
to reconstruct a single line of code with the blocks. In the context
of teaching regex, Wu et al. [40] found that micro Parsons problems
encouraged more learners to complete optional practice problems
in a MOOC while producing an equivalent learning gain as solving
traditional text entry problems. Fig. 1 contrasts a micro Parsons
problem and a traditional Parsons problem.

Despite the benefts of Parsons problems, no prior research has
explored the use of Parsons problems or micro Parsons problems
for practicing SQL. As writing SQL statements requires learners to

https://orcid.org/0000-0002-3161-2232
https://orcid.org/0000-0001-6881-8341
https://doi.org/10.1145/3613904.3641910
https://doi.org/10.1145/3613904.3641910
mailto:barbarer@umich.edu
mailto:permissions@acm.org
mailto:ziwu@umich.edu
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613904.3641910&domain=pdf&date_stamp=2024-05-11

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Zihan Wu and Barbara J. Ericson

(a) Micro Parsons problem with block-based feedback (b) Traditional Parsons problem for swapping variable values in Python.
("Check me" button) for SQL.

Figure 1: A micro Parsons problem and a traditional Parsons problem. The micro Parsons problems ask learners to rearrange
code blocks to form one statement, while the traditional Parsons problems ask learners to rearrange blocks with one or more
lines to form a complete program.

assemble table and column names with reserved keywords correctly,
micro Parsons problems can potentially be used for practicing SQL.
Thus, in this study, we explore the use of micro Parsons problems
in SQL in an introductory undergraduate programming course, and
explore its efect as practice problems compared with the authentic
text-entry task. We investigate two types of feedback for micro
Parsons problems: block-based feedback (highlighting incorrect
blocks) and execution-based feedback (showing error messages or
execution results). With a think-aloud lab study and a classroom
study, we answer the following research questions:

• RQ1 - Among micro Parsons problems with block-based feed-
back, micro Parsons problems with execution-based feed-
back, and common practice (text-entry problems), what type
of practice questions do students prefer, and what are their
criteria for preference?

• RQ2 - What are learners’ perceived advantages and disadvan-
tages of micro Parsons problems compared with text-entry
problems as practice for writing SQL statements?

• RQ3 - What are learners’ perceived advantages and disadvan-
tages of block-based feedback and execution-based feedback
in micro Parsons problems?

• RQ4 - How do micro Parsons problems afect learners’ short-
term learning gain and pattern acquisition compared with
text-entry problems as practice for writing SQL statements?

By adopting a new way to practice creating SQL statements,
studying learners’ responses, and evaluating their performance in
an authentic classroom setting, our paper contributes the following:

• Adopting micro Parsons problems to create a new type of
engaging SQL practice puzzles for novices;

• Understanding how learners interact with micro Parsons
problems in the context of SQL, and what afects their learn-
ing experience and preferences;

• Collecting learners’ perspectives on the input methods of
the SQL micro Parsons puzzles as well as diferent types of
feedback, and how they afect learning;

• Providing empirical evidence of the efectiveness of this new
type of SQL practice problems in a real classroom setting.

In section two, we review the prior research on learning SQL
and existing tools, various types of Parsons problems, and related
learning theories. Section three demonstrates the tool interface,
as well as the two diferent types of feedback. Section four details
the within-subject think-aloud study for qualitative insights, while
section fve presents the between-subject classroom studies for
quantitative results. Section six discusses our fndings with respect
to our research questions, and connects the use of micro Parsons
problems with prior work on SQL novices’ misconceptions. Finally,
section seven discusses the limitations and future work, and section
eight concludes the paper.

2 RELATED WORK
In this section, we review prior problem types and tools for learners
to practice SQL, prior research on Parsons problems, as well as the
learning theories that the design of micro Parsons problems draws
on.

2.1 Teaching SQL
Structured Query Language (SQL) is used to manage relational
databases, and is included in many computer science and software
engineering curricula in higher education [3, 24]. SQL skills are
crucial for storing and retrieving data. However, prior research has
discovered that teaching SQL requires both subject knowledge and
pedagogical skills [33].

A systematic literature review on SQL education showed that
the most popular topics were student errors and exercise databases
[33], instead of creating new tools. Many tools developed for SQL
education focused on visualization [12, 20] or automatically grading
student answers [17].

There is limited prior work on tools or systems that provide SQL
practice or alternative methods for creating SQL statements. SQLRe-
pair by Presler-Marshall et al. automatically fxes learners’ SELECT

SQL Puzzles CHI ’24, May 11–16, 2024, Honolulu, HI, USA

statements [27]. Brusilovsky et al. designed a more comprehen-
sive SQL adaptive learning system that provides content adaptivity,
which navigates learners to diferent SQL concepts and problem
sets based on learners’ student models [5]. Similar to most systems,
both of these works ask learners to write code from scratch, and
do not provide alternative practice methods.

Some systems provide alternative ways for learners to formulate
SQL statements. Aisha [2] designed a web-based tool for adminis-
tering tests in SQL, which provides the complete list of keywords
as well as the attributes in the given database, and asks learners to
input their answers using a point-and-click method.

Prior work has also developed block-based programming lan-
guages for SQL that enable a drag-and-drop input modality, such
as SQLsnap [30] (a plugin for Snap! [4]), BlocklySQL [26], and
SQheLper [16]. These block-based programming languages for SQL
provide a relatively large number of diferent blocks, such that they
can support any SQL statement. For example, SQheLper contains
23 diferent blocks, and SQLsnap has 30 diferent blocks 1. These
block-based languages and the work by Aisha [2] ofer alternative
ways to input SQL statements, and can potentially reduce trivial
errors such as misspelling keywords. However, the large number
of blocks can increase the cognitive load for novices.

We have not seen any prior work for teaching SQL that uses
Parsons problems as a type of SQL practice problem.

2.2 Parsons Problems
While traditional practice problems require learners to write code
from scratch based on a problem description, Parsons problems
ofer an alternative way to provide students with hands-on practice.
Parsons problems are a type of programming puzzle that provides
mixed-up blocks of solution code along with the problem descrip-
tion, and ask learners to rearrange the code blocks into the correct
order [25]. To highlight common mistakes and syntax errors, as
well as modeling good practice in writing code, Parsons problems
often include distractors, i.e. extra code blocks that are not part of
the answer [25].

Parsons problems are often confused with block-based languages
[9] because of the similarity in their input modality — drag-and-
drop blocks to form code. Block-based programming difers from
Parsons problems as they are typically open-ended, and provide a
broader range of options to choose from; Parsons problems, how-
ever, usually contain a problem statement that limits and defnes
the question, and have very limited sets of code fragments [9]. The
diference in design refects their diferent goals. Many block-based
programming languages, such as Scratch [22] and Snap! [4], have a
focus on creativity [23], and thus provide a wide variety of blocks
and slots such that they can support users’ creativity needs. Parsons
problems, on the other hand, focus on scafolding problem-solving
for given programming problems, and reducing the problem space
by limiting the number of blocks.

Researchers have investigated the efect of Parsons problems in
diferent contexts, including block-based programming languages
[41] and text-based programming languages [10], in mobile apps
and interactive e-books [10], as well as in classrooms [35] and in

1The number of blocks in SQLsnap was retrieved in December 2023. BlocklySQL did
not provide the number of blocks.

MOOCs [40]. Ericson et al. [10] found that Parsons problems were
a more efcient type of practice problem compared with write
code problems, but were just as efective in terms of learning gain.
Weinman et al. investigated one variation of Parsons problems
that asks learners to fll in some blanks of the Parsons blocks and
discovered that it was helpful for programming pattern acquisition
[35].

Researchers have explored two types of feedback in Parsons
problems. Block-based feedback (or line-based feedback) highlights
the code blocks that are incorrect or in the wrong order in learn-
ers’ solutions. Execution-based feedback runs learners’ code and
returns the execution results, such as syntax errors from the com-
piler or interpreter, or the output when the code is executable. A
recent literature review on Parsons problems pointed out that there
is limited research that studies the feedback types [9]. The only
work we were able to locate is from Helminen et al. [14], who con-
ducted a classroom study to compare the efectiveness of the two
types of feedback, but did not fnd diferences in terms of learning.
However, in the student survey, they found that some students
think the execution-based feedback is difcult to understand and
did not help them correct their answers. Even in the design space
of block-based programming languages, we have not seen prior
work comparing diferent types of feedback for learners. In our
work, we aim to generate more insights into learners’ perceptions
of diferent feedback types for Parsons problems, which could be
potentially helpful for a broader audience that studies block-based
programming languages.

In most variants of Parsons problems, each code block contains
one or more lines of code. This limits the ability of Parsons problems
to provide practice for learners at a smaller level of granularity. Wu
et al. [40] proposed "micro Parsons problems" which ask learners to
assemble code fragments in a single line. They implemented micro
Parsons problems with execution-based feedback, and evaluated
them for learning regex within a MOOC. They discovered that
micro Parsons problems signifcantly reduced the dropout rate from
optional practice in a MOOC compared with text-entry problems,
and learners in the micro Parsons group performed better on test
problems that evaluated their ability to recall the meaning of special
regex symbols. However, the empirical evidence of using micro
Parsons problems in practice is still limited, and we did not fnd
any prior work that evaluated micro Parsons problems with other
programming languages such as SQL, or tested it in classrooms.

2.3 Worked Example Efect and Completion
Problem Efect

Cognitive load theory (CLT) explains how learning can be nega-
tively afected when learners are provided with information that
requires too many cognitive resources to process [8]. CLT identi-
fed that the limited capacity of working memory can become a
bottleneck for learning if too much information must be processed
at once. When instructional materials or activities take up too much
working memory, the process of constructing schema will be nega-
tively afected. Thus, one design goal of instructional activities is
to avoid cognitive overload for learners.

Both the worked example efect and the completion problem
efect originated from CLT. The worked example efect is one of

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Zihan Wu and Barbara J. Ericson

(a) Micro Parsons problem with block-based feedback ("Check
me" button).

(b) Same micro Parsons problem with execution-based feedback
("Run" button) and with answer flled in.

Figure 2: Micro Parsons SQL problem deployed on Runestone. Before the user requests feedback, the only diference between
block-based feedback and execution-based feedback is the text on the left button. Each problem has a problem description, and
a micro Parsons input area. The correct answer for this question is demonstrated in (b). Block “*” is a distractor that is not part
of the answer.

the most widely studied efects that draw on cognitive load theory
[31]. It suggests that asking learners to study worked examples
places the focus on understanding problem states and solutions
steps while reducing the need for complicated means-ends search
for the correct solution.

However, plain worked examples can be less efcient when learn-
ers do not carefully study them. Even when they are interleaved
with the authentic task, not all learners choose to fully process
the worked example prior to attempting the problem on their own.
When learners choose to refer to the worked examples during their
problem-solving attempts, both the example and the problem they
work on are processed in learners’ working memory [32], and can
potentially result in cognitive overload.

To address this issue, van Merriënboer [34] suggested "comple-
tion problems" as an alternative. Compared to the authentic task,
completion problems provide a partial solution, but still requires
learners to complete the solution based on given clues. In the con-
text of programming education, providing learners with a problem
description, a code solution to the problem with several blank lines,
and asking learners to fll in the blanks, is an intuitive example of
completion problems. Learners received a partial solution, but still
need to put in cognitive efort to complete it. Parsons problems
are also a type of completion problem, as they provide a correct
solution in mixed-up order, and require learners to comprehend
the code blocks and reconstruct the correct solution.

In theory, completion problems typically decrease extraneous
cognitive load by reducing the size of the problem space [32, 34],
while forcing learners to interact with the partial solution. Thus,
particularly for less experienced learners, Parsons problems can be
used to avoid cognitive overload.

3 SQL PUZZLES: MICRO PARSONS PROBLEMS
WITH SQL

We implemented both block-based grading (highlighting incorrect
code blocks) and execution-based grading (executing the code rear-
ranged by students and showing error message/execution result)
for SQL in Runestone Academy [21], an online interactive e-book
platform.

Fig. 2 demonstrates a micro Parsons SQL problem with block-
based feedback and a micro Parsons SQL problem with execution-
based feedback. A micro Parsons problem contains a problem de-
scription, a source area, and a solution area. While traditional Par-
sons problems usually contain blocks with one or more statements,
the answer to introductory-level SQL practices is often limited to
one statement. Thus, we adopted micro Parsons problems which
focus on the practice of a single statement. Learners can drag or
click the blocks in the source area to move them to the solution area.
Diferent from the explanation of special symbols in regex in [40],
the blocks in micro Parsons SQL problems do not contain explana-
tions, and are not reusable, as SQL does not usually directly repeat
code pieces multiple times as regex (e.g. "\� +" is used repeatedly
in "(\� + \.) + (\� +)" for matching a simple URL).

While prior work on traditional Parsons problems has explored
block-based feedback and execution-based feedback [14], as of the
time of our work, the only existing work on micro Parsons problems
only used execution-based feedback in regex [40]. To collect insights
on both block-based feedback and execution-based feedback in
micro Parsons problems, we implemented micro Parsons problems
that support either type of feedback.

When students fnish assembling the code blocks, they can click
the "Check Me" button (block-based feedback) or "Run" (execution-
based feedback) button to request feedback. Then, an area with
feedback (see fg. 3 and fg. 4) will appear.

SQL Puzzles CHI ’24, May 11–16, 2024, Honolulu, HI, USA

(a) Block-based feedback when the answer is correct.

(b) Block-based feedback when the answer is incorrect.

Figure 3: Block-based feedback for the micro Parsons prob-
lem in fg. 2(a) when the answer is correct (a) and incorrect
(b).

Fig. 3 demonstrates the block-based feedback when the answer is
correct (a) and incorrect (b). There are two common algorithms used
to provide block-based feedback: longest common subsequence
(LCS) and frst-incorrect. The LCS method [10] calculates the longest
common subsequence between the student’s answer and the correct
answer, and highlights all blocks in the student’s answer that are
not in the LCS, whether they are misplaced or are not part of the
correct solution. The frst-incorrect [29] algorithm highlights the
frst incorrectly placed block in the learner’s solution. In this work,
we followed Runestone’s existing feedback method for traditional
Parsons problems, and implemented the block-based feedback based
on LCS. Blocks that are not part of the LCS are highlighted in red.

Fig. 4 demonstrates execution-based feedback when learners’
answer is correct (a) and incorrect (b). The execution-based feedback
for micro Parsons SQL problems consists of unit test results on the
top as well as execution results on the bottom. It was implemented
to be consistent with the feedback provided for text-entry SQL
problems in Runestone. With the support of SQL-js, a JavaScript
library that is SQLite compiled to WebAssembly, the system is able
to execute students’ code in the browser. When the code can be
successfully executed, the system displays the data retrieved by
the statement (a); When a syntax error is detected in the code or
an error occurs while executing the statement, the system will
show the error message from SQLite (b). If the tested statement
is not SELECT and thus does not return any data (e.g. UPDATE),
the instructor can also set the system to visualize the full table to
display any change.

4 WITHIN-SUBJECT THINK-ALOUD STUDY
To understand how learners perceive micro Parsons problems with
block-based feedback, micro Parsons problems with execution-
based feedback, and traditional text-entry problems, we conducted
a think-aloud study with a counterbalanced design with 12 partici-
pants.

(a) Execution-based feedback when the code is executed without
error.

(b) Execution-based feedback when SQLite returns error mes-
sages.

Figure 4: Execution-based feedback for the micro Parsons
problem in fg. 2 (b) when code can be executed successfully
(a) and when there was a syntax error (b).

4.1 Methods
With IRB permission, we sent out a recruitment message as an
announcement in the learning management system of an under-
graduate data-oriented programming course, which includes basic
SQL concepts. The course briefy covers basic SELECT, UPDATE,
and JOIN in one week. Both students who had taken the course
in the previous semester (learned the SQL concepts at least two
months before the recruitment, and were unlikely to be taking ad-
vanced SQL courses) and students who were currently taking the
course (had not yet started on SQL) received the message through
email. We specifcally asked for participants who understand the
structure of relational databases (tables) and basic SQL statements
(SELECT). Twelve participants signed up for the study within the
recruitment time range and gave consent.

The think-aloud study was conducted remotely through web con-
ferencing software. Prior to the task, learners completed a pre-task
survey, which included basic demographic information. The aver-
age age of the participants was 20.75. Seven participants identifed
as female, four identifed as male, and one identifed as non-binary.
To understand how well the participants of the think-aloud study
represent introductory CS learners in general, we also included a
5-point Likert scale six-question self-efcacy survey for CS, which
was frst developed by Wiebe et al. [38] and revised to a shorter
version by Wiggins et al. [39].

To make sure all participants were novices in SQL, we included
a self-evaluation survey for participants to self-report their prof-
ciency in SELECT, UPDATE, and JOIN, three key concepts included

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Zihan Wu and Barbara J. Ericson

in the think-aloud study. No participant reported that they were
confdent in using UPDATE and JOIN in complex programs, and
only one participant reported that they were confdent in using
SELECT in complex programs.

After the pre-task survey, learners completed a short tutorial on
the tool that contained three types of problems. For each problem
type, we provided a 30-second video demonstrating how to interact
with the tool, construct an answer, and interpret the feedback. We
also provided a sample question for learners to gain familiarity with
the problem type.

Then, learners were asked to solve 6 SQL problems. We created
three versions for each problem: micro Parsons problems with block-
based feedback (PB), micro Parsons problems with execution-based
feedback (PE), and traditional text-entry problems (TE). For each
problem, all three versions had identical problem descriptions. The
PB and PE versions had the same set of randomized blocks, and the
PE and TE had the same test cases for execution-based feedback.

Table 1: Counterbalanced design of think-aloud study

Group Practice Problem Type

A TE - PB - PE - TE - PB - PE
B TE - PE - PB - TE - PE - PB
C PB - TE - PE - PB - TE - PE
D PB - PE - TE - PB - PE - TE
E PE - TE - PB - PE - TE - PB
F PE - PB - TE - PE - PB - TE

To reduce the ordering efect, we randomly assigned 12 par-
ticipants into six groups (see table 1). Participants were asked to
verbalize their thinking while solving the problems. Participants
were allowed to ask for help when they were stuck. After the prac-
tice problems, we asked learners to rank the three practice tools:
micro Parsons problems with block-based feedback (PB), micro
Parsons problems with execution feedback (PE), and text-entry
questions (with execution-based feedback) (TE). Finally, we con-
ducted a short semi-structured interview with each participant,
with starter questions such as "What were you considering when
you were ranking the problem types".

4.2 Results
One researcher frst went through the transcriptions of the frst
four participants and used open coding with the grounded theory
methodology [11] to generate an initial codebook with three code
families. Following the initial code book, the researcher and a gradu-
ate student coded the transcript of four participants, while iterating
on the code book. After two rounds of discussion and iteration,
the two coders coded eight participants independently according
to the revised code book, and reached a Krippendorf’s alpha of
0.92. The researcher then coded the remaining four participants
independently.

4.2.1 Learners’ Preference for Practice Type, Self-Eficacy, and Fa-
miliarity with the Topic. Between the think-aloud practice and the
interview, we asked learners to rank the types: Parsons with block-
based feedback (PB), Parsons with execution-based feedback (PE),

and text-entry (TE) (with execution-based feedback). Five partici-
pants (42%) picked TE as their most preferred type of problem for
practice, four (33%) chose PE, and three (25%) chose PB. Table 2
shows the complete results for learners’ preference rankings.

Table 2: Learners’ Self-Reported Preference Ranking for
Three Type of Practice Problems

Ranking Count Participants

PE > TE > PB 3 P01 P06 P09
TE > PE > PB 3 P02 P04 P05
PB > TE > PE 2 P03 P08
TE > PB > PE 2 P10 P12
PB > PE > TE 1 P11
PE > PB > TE 1 P07

For the presurvey on participants’ self-efcacy in computing
and familiarity with the topic, we calculated the overall score for
each participant as the mean of all survey questions (6 questions
for self-efcacy, 3 questions for familiarity with the topic), on a
scale of 1 (low self-efcacy or familiarity) to 5 (high self-efcacy or
familiarity). The average of participants’ self-efcacy ratings was
3.79 (n = 12, SD = 0.33). Participants whose most preferred question
type was text entry (n = 5) had an average self-efcacy in computing
of 3.63 (SD = 0.30), and participants whose most preferred question
type was Parsons (PE or PB, n = 7) had an average self-efcacy
of 3.88 (SD = 0.62). In terms of familiarity with the three types of
statements in the study (SELECT, UPDATE, and SELECT with JOIN),
participants had an average score of 2.89 (SD = 0.96). Learners who
picked text entry as their frst choice had an average of 3.27 (SD
= 0.83), and those who picked Parsons (PE or PB) had a relatively
low average of 2.62 (SD = 1.00). Figure 5 shows the box plot of the
results.

Figure 5: Box plot of self-reported self-efcacy and familiar-
ity with the topic by the input type of the most preferred
problem type.

4.2.2 Learners’ Criteria for Preference. Right after the learners
ranked the problem types, we asked for the underlying criteria
that determined their preference, i.e. "What were you considering

SQL Puzzles CHI ’24, May 11–16, 2024, Honolulu, HI, USA

when you were ranking them". We extracted three themes from the
learners’ responses.

Perceived learning. Although participants had diferent prefer-
ences for the tools, all participants said that they preferred tools
that they perceived as helpful for their learning. However, learners
had quite diferent ideas of what helps them learn best. Most par-
ticipants compared the diference of perceived learning from the
perspective input types (Parsons or text-entry).

For those who favor text entry, some reported that simply typing
things out makes them feel like they are learning more, and some
preferred to minimize the help they receive during practice:

"So it’s like, just doing it yourself is the best way to
learn it, because the more times you do it, the better
you get at it..., obviously, it’s [a] bit harder, because you
aren’t getting as much help. But I think that, like, that,
fundamentally, is the best way to learn how to code."
(P05)

On the contrary, some learners who preferred Parsons (PE or PB)
brought up the importance of learning efciency, and getting help
is an important part of that.

"My primary criteria was the one that was easiest for
me to like, get the concept if I didn’t already understand
it... I don’t think I would have been able to fgure out
just the text[-entry] ’JOIN’ problem by myself." (P11)

Meanwhile, some learners value getting the right type of feed-
back the most. P06 loved getting execution-based feedback, as it
helped them feel more active in the learning process:

"So I know, I’m kind of more active in it. And I don’t
feel like I’m just kind of breezing through or zoning out
by any means." (P06)

Task Authenticity. In their responses, fve participants (42%)
mentioned that they value the authenticity of the task, four of
which (80%) picked text-entry as their most preferred practice tool.
The other participant picked PE as their frst choice because it
provided the same feedback as the text-entry problem. The learners
expressed that they want to gain experience in an environment
that is similar to how programming is used in life:

I mean, for practice’s sake, I probably would rank this
one [text-entry] as the frst one. Because in real life, you
still have to [do text] entry. Like you enter your code in
text. (P10)

More specifcally, the authenticity aligns with the scenarios in
which they will be tested in the future, such as technical interviews,
and this consideration outweighs the perceived benefts of Parsons
problems. For example, P12 felt that Parsons problems help learners
focus on the big picture instead of spelling, but concluded with:

"But, you know, overall, I still prefer this [text-entry]
because it just lets [me] challenge myself and, you know,
test my skills as if it were an interview or something."
(P12)

Prior Knowledge. Three participants (25%) explicitly expressed
that their prior knowledge, or their current profciency in the topic,
played an important role when they decided their preference. All

three of them thought that text-entry requires more prior knowl-
edge to successfully complete. P01 described that evaluating their
own level of profciency is also part of their thinking process:

"So like, the text entry problems were where I was at,
like, knowledge-wise. I think you defnitely need to know
more to do the text entry problems."

Two of these participants also explained the role of prior knowl-
edge from the perspective of feedback when comparing the two
types of Parsons problems. They felt that the block-based feed-
back was great as an introduction to knowledge, since highlighting
the incorrect blocks gives them more direction on how to fx the
problem:

"So since the block-based feedback, will, like visually
tell you, Hey, this is where you got things wrong, I think
these can be very helpful for practicing something they
just got introduced to." (P08)

4.2.3 How does the type of input afect the learning experience?
Based on learners’ feedback, we summarized the unique features of
the learning experience using text-entry input and Parsons input.
Text-entry input provides less help, requires learners to pay more
atention to details such as spelling and table/column names, and
maintains the authentic typing experience.

According to learners, when using text-entry, they have a lot
more to consider than just moving the blocks to the correct place.
Some participants valued the process of making and fxing small
mistakes, as they feel that it is part of the learning process. When
solving one of the text-entry problems, P01 accidentally added "1"
instead of "10" as required, and fxed the mistake afterward. When
refecting on that, they commented:

"I’ve always been taught, like, the best way to learn is
from making mistakes... it’s defnitely a lot harder to
make mistakes on drag-and-drop problems. So I was
able to learn and I think it was helpful being able to like,
look through and fgure out what I did wrong through
the text entry problems." (P01)

However, some learners thought irrelevant mistakes were not help-
ful for focusing on what they were really trying to learn. P10, who
made a similar mistake by writing "90" instead of "10" and spent a
long time debugging it, said

"In that sense, I feel like drag and drop is more efcient,
because changing this from 10 to 90 doesn’t really, like,
improve my skill. And SQL is my [current] problem."
(P10)

Interestingly, we found that the simple activity of typing can
afect learners’ experience. P02 compared the beneft they felt from
text-entry input with the experience of note-taking:

"You know, it’s kind of like when you write out notes
in class or something, kind of just feel like you’re like
taking in the information a little bit better. At least I
feel that way."

Compared with text-entry input, learners found Parsons faster
to complete and more efcient for learning since they avoided
making trivial mistakes. Learners also felt that Parsons problems
provided them with worked examples for learning. P07 compared

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Zihan Wu and Barbara J. Ericson

their perceptions of Parsons problems and text-entry problems’
roles:

"I think the drag and drop ones are more like, an input
process. And text-entry is more like, testing my knowl-
edge after I have learned something."

However, learners also expressed concern that there’s the possibility
of gaming the system, and worry some users might just reorder
the blocks until the answer is correct, without learning from it.

4.2.4 How does the type of feedback in Parsons problems afect the
learning experience? All participants felt that block-based feedback
was easier to understand than execution-based feedback. We also
summarized the unique traits of block-based feedback (fg. 3) and
execution-based feedback (fg. 4) suggested by the learners.

According to the learners, block-based feedback is helpful in the
way that it helps locate errors and uses natural language feed-
back. One of the common features mentioned by the participants
was the ability to highlight incorrect blocks (blocks that are not
in the longest common sequence between the submitted answer
and the correct answer). Some felt that it helped them to fx their
solutions faster, and others felt it also helped them learn:

"If I have a block that’s highlighted, and tells me that
this isn’t the wrong place. I think I learned better, and I
will not make a similar mistake in the future." (P12)

Although when learners’ answers are incorrect, block-based feed-
back always provides the same feedback text as shown in fg. 3,
learners feel that the prompt, written in natural language, also
helped them fx their code. P08 said:

"[after seeing the feedback,] and then you’re like, which
one was, say, the wrong order, or it was just the wrong
option in general. And so I could kind of correct myself
quickly."

However, some learners also feel block-based feedback was not
directly related to coding, so they did not know why it was incor-
rect in the sense of programming.

On the other hand, execution-based feedback provides the orig-
inal compiler error message and maintains the authenticity
of debugging. When a syntax error occurs in submitted code,
execution-based feedback provides the error message as-is, which
does not always point to the exact error location. P02 was frustrated
by the error message:

"I can’t really make sense of this... I also don’t know
the ’errors near FROM: syntax error’. But like, in my
head, I kind of know that the issue is ’FROM’ should
come before ’WHERE’, but this error is not really super
helpful..."

However, some participants like to fgure out how to fx the
errors, since they fnd that more challenging.

"I would probably prefer problems like this (execution-
based) where I would want a little bit of challenge, so I
can fgure out how to how to solve those syntax errors
on my own." (P03)

Participants also highlighted that execution-based feedback feels
more authentic (see section 4.2.2).

5 BETWEEN-SUBJECTS FIELD STUDY
To compare the efectiveness of using micro Parsons problems
as practice in SQL versus traditional text-entry problems, we con-
ducted two between-subjects feld studies in an authentic classroom
environment to evaluate the diferences in learners’ learning gain
and ability to adopt certain syntax patterns in SQL. Because the
class we have access to has a limited class size, we split the study
into two parts which were conducted in two consecutive semesters:
First, in fall 2022 (semester 1), we compared the efectiveness of
Parsons problem with block-based feedback and traditional text-
entry problems in class (PB-TE1); Then, in winter 2023 (semester
2), we compared Parsons problems with execution-based feedback
and traditional text-entry problems, in the same class (PE-TE2).
Both classes was taught by the same instructor and had the same
syllabus. The study was conducted in a data-oriented programming
course. It used Python as the main programming language and
included a variety of topics, including basic Python data structures,
object-oriented programming, web scraping, etc. The course cov-
ered the topic of working with databases in three lectures, during
which basic SQL concepts and skills were introduced, such as using
CREATE TABLE, INSERT, SELECT, UPDATE, DELETE, and basic
JOIN statements. The study was conducted in an R1 research uni-
versity with IRB approval, and all data collected were anonymized.
One of the authors is the instructor of the course. The instructor
uses an interactive ebook in Runestone, which have traditional Par-
sons problems as practice. Students have practiced with traditional
Parsons problems as homework and in-lecture activities regularly
prior to being introduced to micro Parsons problems with SQL.

5.1 Methods
5.1.1 Participants and Procedure. To avoid taking too much time
from the normal teaching activities in lectures, in each semester,
we conducted the study in two sessions during the two consecutive
lectures of the course. Fig. 6 demonstrates the study procedure for
PB-TE1 (semester 1), the number of students who participated in
each stage, and the fnal participant number. PE-TE2 adopted the
same procedure, only the number of participants was diferent.

During the frst lecture, the instructor briefy introduced the
basic concepts of databases and tables, simple SELECT, UPDATE,
INSERT, DELETE statements, and WHERE clauses with logical op-
erators. At the end of the frst lecture, students took a 10-minute
timed pretest with three traditional text-entry problems. No assign-
ments on databases or SQL were issued between the two lectures
so that any learning gain from the pretest to posttest likely resulted
from the practice activities in the study. The second part was con-
ducted at the beginning of the second lecture, which happened two
days after the frst lecture. It started with an 8-minute knowledge
introduction including three worked examples for SELECT, UP-
DATE, and JOIN. It reviewed the knowledge covered during the
frst lecture and introduced new knowledge prior to asking learners
to practice. New concepts and syntax patterns introduced on the
knowledge introduction page included using UPDATE to add to an
existing value (e.g. "SET price = price + 2") and simple JOIN state-
ments. Next, students moved on to a 15-minute practice, where they
were randomly assigned to either the micro Parsons (Block-based
feedback) group (PB) or the traditional text-entry group (TE) to

SQL Puzzles CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 6: Procedure of study PB-TE1 in the frst semesters
in the context of the lectures. The number of students who
showed up in the current session is denoted by black text,
while the fnal participants who showed up for both lectures
were highlighted in blue.

complete fve practice problems. Finally, the second session ended
with a 10-minute timed posttest, which contained three traditional
text-entry problems that were isomorphic to the pretest. Learners
were instructed not to refer to outside resources during the study.
Students who showed up to both lectures and completed all ac-
tivities in the study session were considered valid participants. In
total, 74 students were included in the PB-TE1 study (semester 1,
n�� = 34, n� �1 = 40), and 46 students were included in the PE-TE2
study (semester 2, n�� = 16, n� �2 = 30).

5.1.2 Study Material. The practice problems of study two used the
last fve practice problems from study one. The frst problem from
study one was not included in this study, as it was similar to the
second problem.

Both the pretest and the posttest were a set of three text-entry
problems with SELECT, UPDATE, and SELECT/JOIN statements to
test learners’ abilities to write code in an authentic environment.
The pretest and posttest questions were isomorphic, meaning that
the problems, solutions, and databases had the same structure, but
in diferent contexts and had diferent data. As learners were new
to SQL and were expected to produce many syntactically incorrect
answers, automatically grading SQL statements based on execution
would result in a lot of zero scores, leading to the loss of details that
refect students’ understanding of certain keywords and patterns.
Thus, we developed a grading scheme based on students’ abilities
to write out certain parts of the answer. A sample grading rubric
for problem two in the pretest is presented in table 3.

After two researchers discussed and iterated on the rubrics, one
researcher then manually graded students’ answers for the pretest
and the posttest. The full mark for each test is 10 points. During
grading, the researchers were blind to the experimental group as-
signment of the students.

5.2 Results
Using the same methods in PB-TE1 (semester 1) and PE-TE2 (se-
mester 2), we evaluated the learning gain and students’ abilities to

Table 3: Grading Rubric for Test Problem 2

Correct Answer:
UPDATE equipment SET quantity = quantity + 5
WHERE sport = "table_tennis"
No. Pattern Position Pt.
1
2
3
4

UPDATE equipment SET
SET quantity = quantity + 5

WHERE sport = "table_tennis"
met 1-3 but has extra incorrect code

-
after 1
after 1, 2

-

1
1
1
-1

reproduce certain programming patterns that were provided in a
single block as a worked example.

5.2.1 Learning Gain. We frst checked if there was any signifcant
diference between the groups by the pretest score. In the PB-TE1
(semester 1) comparison, group PB had an average pretest score of
1.9 (n = 37, SD = 2.2), and group TE1 had an average pretest score
of 2.3 (n = 45, SD = 2.4). In the PE-TE2 (semester 2) comparison,
the average pretest score of PE was 5.0 (n = 16, SD = 3.4), and the
average score of group TE2 was 5.4 (n = 30, SD = 3.4). We used
Welch’s t-test to analyze the diference between the pretest score
of PB and TE1, as well as PE and TE2, as [7, 37] recommended it in
social science analysis, especially for small samples. No statistically
signifcant diference was found at � = 0.05, meaning the groups
in each semester were comparable. When comparing between two
semesters, we found that the winter 22 semester (PE-TE2) had
a signifcantly higher pretest score (mean = 5.26) than the frst
semester (PB-TE1, mean = 2.13), suggesting that the population for
the two semesters was not comparable. Thus, we did not perform
any comparisons across the semesters.

We obtained the students’ learning gain by subtracting the learn-
ers’ pretest score from the isomorphic posttest score.

Table 4 shows the result of the Welch’s t-test on the learners’
learning gain. The average learning gain for students in the block-
based feedback micro Parsons problems group (PB) was 3.27 (n=37,
SD=2.99), and the average learning gain for its paired control group
(TE1) was 1.82 (n=45, SD=2.64). There was a signifcant diference in
the overall learning gain between PB and TE1 (� = 0.024, Hedge’s
� = 0.52). For the comparison between execution-based feedback
micro Parsons (PE) and its control group (TE2), we did not fnd a
signifcant diference at � = 0.05 level. The average learning gain
for PE was 4.38 (n=16, SD=3.24), and the learning gain for TE2 was
2.87 (n=30, SD=3.61).

5.2.2 Learning Code Paterns. We also analyzed learners’ ability
to learn from the code patterns provided by a single block in mi-
cro Parsons problems. We identifed two patterns, each provided
within a single block, such that learners can learn the usage of
the patterns by putting the block that contains the pattern in the
right place. The frst pattern ("quantity = quantity + 5") comes
from the UPDATE statement, where learners were asked to add a
certain value to an existing column. To only evaluate the pattern,
we ignored the formatting, and allowed any numbers. The second
pattern ("students.name") comes from SELECT + JOIN statement,
where learners were asked to specify a column name in a table. As
long as the learner successfully called one column by a complete

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Zihan Wu and Barbara J. Ericson

Table 4: T-Test for Student Learning Gain

Parsons Feedback Micro Parsons Text-Entry t p g
n � � n � �

Block (PB-TE1) 37 3.27 2.99
Execution (PE-TE2) 16 4.38 3.24

*� < .05, **� < .01., ***� < .001

table and column name in their answer, we marked the pattern
as implemented. We used regular expressions to match learners’
answers in the posttest to identify the number of learners who
correctly implemented the patterns, and assigned a score of zero
(did not implement) or one (implemented) for each pattern.

Table 5 and table 6 demonstrate the results of students’ learn-
ing of code patterns. In the PB-TE1 comparison, learners in the PB
group demonstrated a signifcantly higher learning gain for the frst
pattern (� = 0.015, Hedge’s � = 0.58) compared to TE1, but no sig-
nifcant diference was found for the second pattern. Interestingly,
in the PE-TE2 comparison, learners in the PE group demonstrated a
signifcantly higher learning gain than TE2 for the second pattern,
and had a large efect size (� = 0.002, Hedge’s � = 0.89). However,
no signifcant diference was found for the frst pattern between
PE and TE2.

6 DISCUSSION
In this section, we discuss our results and summarize our fndings
to answer the research questions.

6.1 RQ1: Student preference, and their criteria
for preference.

We investigated learners’ preference for the three types of practice
questions for SQL (micro Parsons problems with Block-based feed-
back (PB), micro Parsons problems with execution-based feedback
(PE), and text-entry problems with execution-based feedback (TE))
through a within-subjects study. By asking learners to rank their
preferences, we found that learners generally perceived all three
types of problems as helpful for learning, but had very diverse per-
sonal preferences. In our within-subjects study, around half of the
participants chose text-entry problems as their most preferred way
of practice, and half of the participants chose micro Parsons prob-
lem; This aligns with previous fndings on Parsons problems [13].
Most people fnd Parsons problems useful for learning to code, but
some would rather write code than solve a Parsons problem, and
some would like the choice to switch between Parsons problems
and write-code problems. In regards to Parsons problems’ feedback,
learners also demonstrated diverse preferences: around half of the
participants preferred execution-based feedback, while the other
half preferred block-based feedback.

To understand learners’ rationales for their preferences, we took
a deeper dive and asked learners to explain the underlying crite-
ria for their preferences. When asked about their preference, the
learners’ responses mostly focused on comparing micro Parsons

45 1.82 2.64 2.3 0.024* 0.52
30 2.87 3.61 1.4 0.158 0.43

problems and text-entry problems. We found that perceived learn-
ing, task authenticity (similarity to professional practices), and prior
knowledge are the most important considerations. While all learn-
ers perceived learning as the most important criterion, they had
very diferent opinions on what helps them learn best. In our think-
aloud study, we found that the average level of familiarity with the
SQL concepts of students who preferred text-entry was higher than
the average of the students who preferred Parsons. This aligns with
learners’ explanations for their preferences. Many students who
preferred text-entry problems highly valued being challenged, and
viewed the practice as a "test" for themselves. Their goal was to
accomplish tasks from scratch with the minimum amount of hints
or scafolding. In contrast, many learners who preferred micro Par-
sons problems viewed the practice as an "knowledge input" process.
They valued the opportunity to gradually familiarize themselves
with new concepts by actively interacting and experimenting with
them. Meanwhile, we found that task authenticity, or how similar
the process of solving a practice problem is to a real-world scenario
that the students care about (e.g. tests, interviews, professional
practice), is an important consideration, and was mentioned by
most students who preferred text-entry. This suggests the design
potential for customizing the presentation of Parsons problems for
learners: for learners who strongly prefer the "real programming"
experience, instead of making the drag-and-drop interface the only
option, Parsons problems can be used as just-in-time scafolding
when requested by learners as hints, such as in [15]. Or, a mixed-
modality input that enables both typing and using provided blocks
can potentially help learners have a stronger sense of authenticity
while giving them agency over their learning.

6.2 RQ2: Perceived Advantages and
Disadvantages for Input Type

When asked about input types and feedback types, learners iden-
tifed some common traits but demonstrated diferent opinions in
terms of perceiving them as advantages or disadvantages.

Some students preferred text-entry problems, and viewed the
more complicated nature of text-entry problems as an advantage.
They liked to have the ability to make mistakes during practice
questions, and spend time correcting their own mistakes with less
help, viewing it as a valuable learning process. Naturally, they found
micro Parsons problems provided too much help, and worried that
getting the micro Parsons problem correct does not mean that
they can write the equivalent code. In contrast, other students who
viewed micro Parsons problems as a learning process viewed the
reduced problem space as an advantage, because it helped them
focus on the important concepts and made learning more efcient.

SQL Puzzles CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Table 5: T-Test for Pattern Acquisition: Block-Based Parsons Versus Text-Entry

Pattern Parsons Text-Entry z p g
(n = 37) (n = 45)
n % n %

"quantity = quantity + 10" 0.54 0.60 0.24 0.43 2.49 0.015* 0.58
"table.column" 0.30 0.49 0.29 0.46 0.32 0.79 0.02

*� < .05, **� < .01., ***� < .001

Table 6: T-Test for Pattern Acquisition: Execution-Based Parsons Versus Text-Entry

Pattern Parsons Text-Entry z p g
(n = 16) (n = 30)
n % n %

"quantity = quantity + 10" 0.50 0.52
"table.column" 0.88 0.34

*� < .05, **� < .01., ***� < .001

For these learners, text-entry problems can create unnecessary
frustration during learning.

Interestingly, diferent from Wu et al.’s work [40] of using micro
Parsons problems to scafold the learning of regular expressions
(regex), none of our participants mentioned that they had more free-
dom in text-entry input or found that the micro Parsons condition
was restrictive. This is potentially due to the diference between
SQL and regex. SQL is more structured, and usually only has one
correct solution for beginners’ practices. Regex is more fexible
and can have multiple solutions, which makes it frustrating when
more advanced learners want to construct a solution that is difer-
ent from the intended answer. Another reason could be that one
of the important learning goals for SQL novices is to familiarize
themselves with the syntax structure, while in regex there are no
fxed structures to follow, only patterns to learn. This compari-
son also highlights the importance of testing teaching approaches
in diferent context. The nature of diferent learning content, in
our case, diferent programming languages, can result in diferent
experiences for learners.

6.3 RQ3: Perceived Advantages and
Disadvantages for Feedback Types of micro
Parsons Problems

The recent literature review on Parsons problems pointed out that
there’s not enough research on diferent types of feedback [9]:
execution-based versus block-based. To help fll that gap we asked
learners to compare their experiences using the two types of feed-
back. Although learners also demonstrated diverse preferences
towards the feedback, compared to the input types, they agreed
more on some of the advantages and disadvantages of block- and
execution-based feedback.

Execution-based feedback provides the original compiler mes-
sage, and thus maintains the authenticity of debugging for learners.
However, they lack instructions that guide learners towards the
correct solution, do not tell them exactly what is wrong, and are

0.30 0.60 1.18 0.244 0.35
0.47 0.51 3.24 0.002** 0.89

more difcult, especially for beginners. This aligns with Helmi-
nen et al.’s [14] student survey fndings. Meanwhile, block-based
feedback uses natural language and is more friendly for novices.
Highlighting the blocks give students a better sense of direction to
fx their code, but the detachment from coding knowledge-related
feedback is viewed as a disadvantage.

This suggests the potential of combining the advantages of block-
based feedback and execution-based feedback, by developing a type
of feedback that points learners to the direction of fxing the error
more directly, and embeds learning-related information at the same
time.

6.4 RQ4: Short-Term Learning Gain and Pattern
Acquisition

In two separate semesters, we compared micro Parsons problems
with block/execution-based feedback with the traditional type of
practice of writing code from scratch.

We found that learners who used micro Parsons problems with
block-based feedback had a signifcantly higher learning gain than
the traditional text-entry group, and the execution-based feedback
practices were equally efective as text-entry problems. This fnd-
ing suggests that using micro Parsons problems as programming
puzzles is efective for novices learning SQL.

It is interesting to note that PB-TE1 (semester 1) had a lower
pretest score than semester 2, indicating their level of prior knowl-
edge is relatively lower. Combined with our fndings in the qualita-
tive study, where participants who preferred micro Parsons prob-
lems had a lower average prior knowledge, it is possible that for
students with lower prior knowledge, micro Parsons problems can
result in a higher learning gain. However, the diferent types of
feedback that were used between the two semesters, as well as the
diference in population can also be factors afecting learning gain.
Further research could be done to evaluate micro Parsons problems’
efects on learners with diferent prior knowledge on the topic.

In terms of pattern acquisition, students in the two semesters
demonstrated diferent changes. For the PB-TE1 group (semester 1),

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Zihan Wu and Barbara J. Ericson

learners in the micro Parsons with block-based feedback group had
a signifcantly higher pattern acquisition than the text-entry group
in the "quantity = quantity + 10" pattern, which was included as one
block in the micro Parsons problem. Although the patterns were
shown for both groups as worked examples prior to the practice
session, the Parsons groups had higher pattern acquisition. This
suggests the block could have been used as an interactive worked
example, allowing learners to get familiar with how to use the pat-
tern, without having to memorize all details. On the other hand,
learners had comparable pattern acquisition on the "table.column"
pattern. It is possible that the learners learned from similar pat-
terns in object-oriented programming ("object.attribute"), which
was covered before SQL in the course.

For the PB-TE2 group (semester 2), which has a higher pretest
score, learners had comparable pattern acquisition on the frst pat-
tern, but the PE group had signifcantly higher acquisition on the
second pattern. When we took a closer look at students’ responses,
we discovered that for the second pattern, many students with
higher levels of prior knowledge used aliases to refer to table names
in the pretest, and were not counted as the pattern as it was not
demonstrated in Parsons problems. However, in posttest, some
learners changed their answers to follow the blocks shown in the
micro Parsons problems: using full table names instead of aliases.
This could result in an increase in pattern acquisition for the Par-
sons group, as students recognized the pattern and decided to follow
the example provided in the blocks.

It is important to note that while we provided statistic com-
parisons between two diferent groups in each semester, the com-
parison across semesters is only our interpretation of the result,
as there are two diferent changes across the semesters: the feed-
back for Parsons problem, as well as student demographics. Future
work is needed to investigate how these two factors infuence the
efectiveness of Parsons problems as practice.6.5 Micro Parsons Problems and Novices’

Misconceptions in SQL
In this setion, we connect our study and system with prior work in
novices’ misconceptions in SQL, and discuss the benefts of using
micro Parsons problems to help learners avoid misconceptions.

Through a think-aloud study, Miedema et al. [19] explored the
common reasons for novices’ misconceptions in formulating SQL
queries. The majority of the misconceptions they identifed were
closely related to SQL syntax. Novices often incorrectly transferred
their knowledge in other programming languages, math, or natural
language to SQL. As a result, they confuse the use of keywords
and symbols in SQL, such as "==" and "=", whereas in other pro-
gramming languages, the former ("==") is often used for value
comparison, and the latter ("=") is used for value assignment.

In other words, syntax is not a trivial issue for SQL novices. In
our think-aloud study, we also observed that when learners were
facing text-entry problems, they tended to struggle with the cor-
rect syntax. Micro Parsons problems, however, enabled learners
to explore their answers with a given set of keywords, and reduce
the burden of memorizing the exact keyword. Micro Parsons prob-
lems were also helpful for pointing out the common confusion of
symbols by including distractors.

Even with generative AI to help users fx syntax errors, we
believe practicing and understanding syntax in the case of SQL

is important. As pointed out by Miedema et al. [19], the syntax
issue in SQL for novices is not simply memorizing how to use
them, but the confusion caused by the "(in)consistency" of the
language. For example, in SQL, when defning aliases for tables
in SELECT statements, the alias can be used before its defnition
("SELECT p.name FROM product AS p", where the "AS" keyword is
optional). At the same time, aliases can also be created for attributes
("SELECT name AS n FROM product", where the "AS" keyword is
also optional). This inconsistency is confusing for learners, leading
them to make mistakes such as "SELECT name p FROM product p"2.
Automatically fxing this error does not reduce the confusion for
learners. Micro Parsons problems with distractors can help learners
directly contrast the incorrect and correct usages and highlight
their diferences.

For logical and semantic misconceptions, prior work also found
that novices tend to incorrectly generalize SQL templates to other
problems. For these types of misconceptions, micro Parsons prob-
lems can be used to contrast correct and incorrect use of templates
for a given problem, as demonstrated in fg. 7.

Figure 7: An example of a more complicated SQL problem
using COUNT and GROUP BY, from the example of using
incorrect templates by [19]. The correct answer should be
"SELECT city," "COUNT(sID)" "FROM" "store" "GROUP BY"
"city". The block "COUNT(city)" is a distractor, as learners
who memorize the "COUNT - GROUP BY" template can still
confuse the correct column to count.

6.6 Refecting on Micro Parsons Problems from
a Design Perspective

In this section, we refect on the design of micro Parsons problems
by comparing them with traditional Parsons problems, and pro-
pose potential designs that could resonate with learners’ need for
authenticity.

6.6.1 Micro Parsons problems versus traditional Parsons problems:
more than just scale diferences. The primary motivation for using
micro Parsons problems instead of traditional Parsons problems for
SQL was that SQL practice is often limited to one statement. Several
fndings for our study also echoed the prior work on traditional
Parsons problems, such as learners have mixed preferences towards
Parsons problems and writing code, and perceive Parsons problems
2Example are simplifed student errors by Miedema et al. [19]

SQL Puzzles CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 8: An example of using input modality in micro Par-
sons problems to adjust the difculty, ranging from providing
all blocks, asking learners to use a mix of blocks and typing,
and typing from scratch.

as easier. However, we also discovered some unique potential for
micro Parsons problems.

For example, during the interview, all learners agreed that mi-
cro Parsons problems are "a diferent type of input", rather than a
completely diferent type of problem. As a one-statement problem,
micro Parsons problems’ input area is limited to one line. The in-
terface allows users to either click on a block to add it to the end
of their statements, or drag and drop a block to a desired position.
During the think-aloud study, most participants primarily clicked
blocks to create their statement from left to right, closely resembling
writing a statement from scratch. Drag-and-drop methods were
mostly used to rearrange blocks users already put in their state-
ments. This has not been reported by prior research on traditional
Parsons problems.

Another diference of micro Parsons problems is the fexibility
of deciding the size of code blocks. In previous implementations
of traditional Parsons problems, some only allow one line in each
block, such as Epplets [18]. For those that allow one or more lines in
each block, such as Runestone [21] and PrairieLearn [36], the largest
block usually does not exceed three lines. We did not fnd existing
research studying the block size for traditional Parsons problems.
The reason for avoiding larger blocks could be to prevent the large
blocks from being too difcult to comprehend. In contrast, because
of the small size of micro Parsons problems, we can easily have
some blocks with four or more words/symbols (e.g. "grade = grade
+ 10") without being a burden to learners. Thus, micro Parsons
problems could be more fexible in introducing larger blocks to
present a complete code pattern.

6.6.2 Improving programming learning tools for more "authentic"
practice. During our think-aloud study, we observed that a lot of
learners prefer high authenticity in the practice environment. They
expect the practice environment to be very similar to the applica-
tion scenarios that are meaningful for them, such as exams and
interviews. This could be because when practicing in environments
with high authenticity, learners are more confdent about their
self-evaluation. To help fulfll learners’ needs for more authentic
practice while providing scafolding, we can improve the design in
two ways. First, increase the resemblance of the interaction method
between the practice environment and the authentic task; Second,
provide transitions from the practice environment to the authentic
task to help learners track their progress toward the authentic task.

Based on these two methods, we propose a future design for
micro Parsons problems that use a mixed input modality of blocks
and text-entry. t is more similar to the text-entry task than only
using code blocks, and makes learners aware of how much help
they are getting from the practice environment.

7 LIMITATIONS AND FUTURE WORK

7.1 Limitations
One limitation of our work involving block-based feedback is the
choice of algorithm for highlighting incorrect blocks. In this im-
plementation, we chose LCS to stay consistent with the design of
traditional Parsons problems in the same platform, and to avoid
confusing learners who have used the traditional Parsons problems
in the same platform before. However, the choice of algorithm can
also afect learners’ perceptions of the block-based feedback mecha-
nism, and our results are limited to block-based feedback that adopt
the LCS algorithm.

For our qualitative study, one of the major limitations is volunteer
bias. While we discovered that diferent levels of prior knowledge
afected their preferences, we also acknowledge that the partici-
pants in the qualitative study might not accurately represent the
population of novice learners. The think-aloud participants could
be more confdent in programming, more knowledgeable in SQL,
or more open to trying out new tools for learning.

Our quantitative study was also limited in several ways. First,
our study was conducted in two diferent lectures, meaning that
only learners who came to both lectures and completed all activi-
ties participated in our study, resulting in a potential selection bias.
Next, although we made sure there were no related practices or
homework between the pretest and the rest of the study, learners
could still learn during that period. Finally, as we have discussed
in section 6.4, we were unable to gather enough evidence to com-
pare the efectiveness between feedback types, as students in the
two semesters demonstrated signifcantly diferent level of prior
knowledge.

7.2 Future Work
First, we discuss several future directions for Parsons problems
research. Based on our fndings and limitations, there is potential to
investigate two factors on the efectiveness of micro Parsons prob-
lems for learning. On the students’ side, how does prior knowledge
afect the efectiveness? Does syntax knowledge matter more than
semantic and logic knowledge? On the design of micro Parsons
problems, there is also more research to be done to explore diferent
feedback’s efects on student learning.

In terms of learning, this work focused on providing a com-
parison of short-term learning and pattern acquisition for SQL
beginners who just started to learn a new concept, using micro Par-
sons problems and traditional text-entry problems. Although our
study design avoided having other instructional activities assigned
that might afect the results, we did not include a delayed posttest
to evaluate knowledge retention. Future work should explore the
long-term efect of practicing with micro Parsons problems versus
text-entry problems in SQL. Our work in this study also primarily
focused on beginner-level SQL, and did not go into more advanced

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Zihan Wu and Barbara J. Ericson

content. We intend to examine the tools’ ability to assist learners
in more advanced SQL content, such as complicated clauses.

With regard to the context of micro Parsons problems, we have
found that learners had diferent feedback for micro Parsons in SQL
and regex. Future work could expand to diferent contexts, such
as using one line of micro Parsons problems within a larger code
piece, exploring its efect on other languages, etc. Future work can
also compare how learners’ perceptions of micro Parsons problems
difer from Parsons problems, in terms of authenticity and efects
on their self-efcacy.

Second, for programming puzzles and learning puzzles in general,
our results pointed out two important considerations for design:
task authenticity and learner agency. As discussed in section 4.2.2,
students had very diverse personal preferences; Some students had
very strong preferences towards tasks that were meaningful to
them. Future work can also expand our fndings to design learning
tools that provide students with a sense of authenticity, such as
pointing out the connection between the puzzle and knowledge,
providing mixed modality such that the puzzle is connected to the
authentic task, and enabling the transition between the puzzle and
real-world practice.

8 CONCLUSION
We investigated the potential of using a type of programming puz-
zle, micro Parsons problems, to help students learn SQL. We im-
plemented a system that provides SQL puzzles with diferent types
of feedback. With a think-aloud study, we investigated learners’
preferences towards diferent types of practice problems and the
underlying reasons for learners’ preferences. With two between-
subjects classroom studies, we discovered that learners who used
SQL micro Parsons puzzles with block-based feedback to practice
had a signifcantly higher learning gain than traditional text-entry
problems, and SQL micro Parsons problems with execution-based
feedback are equally efective as text-entry problems. Our work
provides a new way of practicing SQL and demonstrates the po-
tential of using micro Parsons problems to help students with new
concepts, especially those with less prior knowledge. Based on our
studies, we also suggest changes to programming puzzles to provide
options to support task authenticity and learners’ agency.

ACKNOWLEDGMENTS
We thank all participants who volunteered to be part of the study.
We also thank Xingjian Gu for helping with the qualitative coding
of the think-aloud data.

REFERENCES
[1] Alberto Abello, Xavier Burgues, M. Jose Casany, Carme Martin, Carme Quer,

M. Elena Rodriguez, Oscar Romero, and Toni Urpi. 2016. A Software Tool for
E-Assessment of Relational Database Skills. INTERNATIONAL JOURNAL OF
ENGINEERING EDUCATION 32, 3, A, SI (2016), 1289–1312. 20th Annual Con-
ference on Innovation and Technology in Computer Science Education, Vilnius,
LITHUANIA, JUL 06-08, 2015.

[2] Aisha Al-Salmi. 2018. A Web-based Semi-Automatic Assessment Tool for Formu-
lating Basic SQL Statements: Point-and-Click Interaction Method. Proceedings
of the 10th International Conference on Computer Supported Education 1 (2018),
191–198. https://doi.org/10.5220/0006671501910198

[3] Mark Ardis, David Budgen, Gregory W Hislop, Jef Ofutt, Mark Sebern, and
Willem Visser. 2015. SE 2014: Curriculum guidelines for undergraduate degree
programs in software engineering. Computer 48, 11 (2015), 106–109.

[4] Berkeley. 2023. Snap! Build Your Own Blocks — snap.berkeley.edu. https://snap.
berkeley.edu/. [Accessed 10-12-2023].

[5] Peter Brusilovsky, Sergey Sosnovsky, Michael V Yudelson, Danielle H Lee,
Vladimir Zadorozhny, and Xin Zhou. 2010. Learning SQL programming with
interactive tools: From integration to personalization. ACM Transactions on
Computing Education (TOCE) 9, 4 (2010), 1–15.

[6] Mark Chatham. 2012. Structured Query Language By Example-Volume I: Data
Query Language. Lulu. com, Raleigh, NC.

[7] M. Delacre, D. Lakens, and C. Leys. 2017. Why psychologists should by default use
Welch’s t-test instead of student’s t-test. International Review of Social Psychology
30, 1 (5 April 2017), 92–101. https://doi.org/10.5334/irsp.82

[8] Paul DiMaggio. 1997. Culture and Cognition. Annual Review of Soci-
ology 23, 1 (1997), 263–287. https://doi.org/10.1146/annurev.soc.23.1.263
arXiv:https://doi.org/10.1146/annurev.soc.23.1.263

[9] Barbara J. Ericson, Paul Denny, James Prather, Rodrigo Duran, Arto Hellas,
Juho Leinonen, Craig S. Miller, Briana B. Morrison, Janice L. Pearce, and Su-
san H. Rodger. 2022. Parsons Problems and Beyond: Systematic Literature Re-
view and Empirical Study Designs. In Proceedings of the 2022 Working Group
Reports on Innovation and Technology in Computer Science Education (<conf-
loc>, <city>Dublin</city>, <country>Ireland</country>, </conf-loc>) (ITiCSE-
WGR ’22). Association for Computing Machinery, New York, NY, USA, 191–234.
https://doi.org/10.1145/3571785.3574127

[10] Barbara J. Ericson, James D. Foley, and Jochen Rick. 2018. Evaluating the Efciency
and Efectiveness of Adaptive Parsons Problems. In Proceedings of the 2018 ACM
Conference on International Computing Education Research (Espoo, Finland) (ICER
’18). Association for Computing Machinery, New York, NY, USA, 60–68. https:
//doi.org/10.1145/3230977.3231000

[11] Barney Glaser and Anselm Strauss. 1999. Discovery of Grounded Theory: Strate-
gies for Qualitative Research. Routledge, New York. https://doi.org/10.4324/
9780203793206

[12] Ryan Hardt and Esther Gutzmer. 2017. Database Query Analyzer (DBQA): A
Data-Oriented SQL Clause Visualization Tool. In Proceedings of the 18th Annual
Conference on Information Technology Education (Rochester, New York, USA)
(SIGITE ’17). Association for Computing Machinery, New York, NY, USA, 147–152.
https://doi.org/10.1145/3125659.3125688

[13] Carl C. Haynes and Barbara J. Ericson. 2021. Problem-Solving Efciency and
Cognitive Load for Adaptive Parsons Problems vs. Writing the Equivalent Code.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(<conf-loc>, <city>Yokohama</city>, <country>Japan</country>, </conf-loc>)
(CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 60,
15 pages. https://doi.org/10.1145/3411764.3445292

[14] Juha Helminen, Petri Ihantola, Ville Karavirta, and Satu Alaoutinen. 2013. How
Do Students Solve Parsons Programming Problems? – Execution-Based vs. Line-
Based Feedback. In 2013 Learning and Teaching in Computing and Engineering.
IEEE, New York, NY, USA, 55–61. https://doi.org/10.1109/LaTiCE.2013.26

[15] Xinying Hou, Barbara Jane Ericson, and Xu Wang. 2022. Using Adaptive Parsons
Problems to Scafold Write-Code Problems. In Proceedings of the 2022 ACM Con-
ference on International Computing Education Research - Volume 1 (Lugano and
Virtual Event, Switzerland) (ICER ’22). Association for Computing Machinery,
New York, NY, USA, 15–26. https://doi.org/10.1145/3501385.3543977

[16] Sven Jacobs and Stefen Jaschke. 2021. SQheLper: A block-based syntax support
for SQL. In 2021 IEEE Global Engineering Education Conference (EDUCON). IEEE,
New York, NY, USA, 478–481. https://doi.org/10.1109/EDUCON46332.2021.
9453897

[17] Carsten Kleiner, Christopher Tebbe, and Felix Heine. 2013. Automated grading
and tutoring of SQL statements to improve student learning. In Proceedings of the
13th Koli Calling International Conference on Computing Education Research (Koli,
Finland) (Koli Calling ’13). Association for Computing Machinery, New York, NY,
USA, 161–168. https://doi.org/10.1145/2526968.2526986

[18] Amruth N. Kumar. 2018. Epplets: A Tool for Solving Parsons Puzzles. In Pro-
ceedings of the 49th ACM Technical Symposium on Computer Science Education
(Baltimore, Maryland, USA) (SIGCSE ’18). Association for Computing Machinery,
New York, NY, USA, 527–532. https://doi.org/10.1145/3159450.3159576

[19] Daphne Miedema, Efthimia Aivaloglou, and George Fletcher. 2022. Identifying
SQL Misconceptions of Novices: Findings from a Think-Aloud Study. ACM
Inroads 13, 1 (feb 2022), 52–65. https://doi.org/10.1145/3514214

[20] Daphne Miedema and George Fletcher. 2021. SQLVis: Visual Query Represen-
tations for Supporting SQL Learners. In 2021 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC). IEEE, New York, NY, USA, 1–9.
https://doi.org/10.1109/VL/HCC51201.2021.9576431

[21] Bradley N. Miller and David L. Ranum. 2012. Beyond PDF and ePub: Toward
an Interactive Textbook. In Proceedings of the 17th ACM Annual Conference on
Innovation and Technology in Computer Science Education (Haifa, Israel) (ITiCSE
’12). ACM, New York, NY, USA, 150–155. https://doi.org/10.1145/2325296.2325335

[22] MIT. 2023. Scratch - Imagine, Program, Share — scratch.mit.edu.
ttps://scratch.mit.edu/. [Accessed 10-12-2023].

[23] Ioanna Moraiti, Anestis Fotoglou, and Athanasios Drigas. 2022. Coding with Block
Programming Languages in Educational Robotics and Mobiles, Improve Problem

https://doi.org/10.5220/0006671501910198
https://snap.berkeley.edu/
https://snap.berkeley.edu/
https://doi.org/10.5334/irsp.82
https://doi.org/10.1146/annurev.soc.23.1.263
https://arxiv.org/abs/https://doi.org/10.1146/annurev.soc.23.1.263
https://doi.org/10.1145/3571785.3574127
https://doi.org/10.1145/3230977.3231000
https://doi.org/10.1145/3230977.3231000
https://doi.org/10.4324/9780203793206
https://doi.org/10.4324/9780203793206
https://doi.org/10.1145/3125659.3125688
https://doi.org/10.1145/3411764.3445292
https://doi.org/10.1109/LaTiCE.2013.26
https://doi.org/10.1145/3501385.3543977
https://doi.org/10.1109/EDUCON46332.2021.9453897
https://doi.org/10.1109/EDUCON46332.2021.9453897
https://doi.org/10.1145/2526968.2526986
https://doi.org/10.1145/3159450.3159576
https://doi.org/10.1145/3514214
https://doi.org/10.1109/VL/HCC51201.2021.9576431
https://doi.org/10.1145/2325296.2325335
https://ttps://scratch.mit.edu
https://snap.berkeley.edu

SQL Puzzles CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Solving, Creativity & Critical Thinking Skills. International Journal of Interactive
Mobile Technologies 16, 20 (2022), 59–78. https://doi.org/10.3991/ijim.v16i20.34247

[24] Joint Task Force on Computing Curricula. 2013. Computer Science Curricula 2013.
Association for Computing Machinery, New York, NY, USA.

[25] Dale Parsons and Patricia Haden. 2006. Parson’s programming puzzles: a fun and
efective learning tool for frst programming courses. In Proceedings of the 8th
Australasian Conference on Computing Education - Volume 52 (Hobart, Australia)
(ACE ’06). Australian Computer Society, Inc., AUS, 157–163.

[26] Nicolai Pöhner, Timo Schmidt, André Greubel, Martin Hennecke, and Matthias
Ehmann. 2019. BlocklySQL: A New Block-Based Editor for SQL. In Proceedings
of the 14th Workshop in Primary and Secondary Computing Education (Glasgow,
Scotland, Uk) (WiPSCE ’19). Association for Computing Machinery, New York,
NY, USA, Article 4, 2 pages. https://doi.org/10.1145/3361721.3362104

[27] Kai Presler-Marshall, Sarah Heckman, and Kathryn Stolee. 2021. SQLRepair:
Identifying and repairing mistakes in student-authored SQL queries. In 2021
IEEE/ACM 43rd International Conference on Software Engineering: Software En-
gineering Education and Training (ICSE-SEET). IEEE, IEEE, New York, NY, USA,
199–210.

[28] Shazia Sadiq, Maria Orlowska, Wasim Sadiq, and Joe Lin. 2004. SQLator: an online
SQL learning workbench. In Proceedings of the 9th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education (Leeds, United Kingdom)
(ITiCSE ’04). Association for Computing Machinery, New York, NY, USA, 223–227.
https://doi.org/10.1145/1007996.1008055

[29] David H. Smith, Max Fowler, and Craig Zilles. 2023. Investigating the Role
and Impact of Distractors on Parsons Problems in CS1 Assessments. In Proceed-
ings of the 2023 Conference on Innovation and Technology in Computer Science
Education V. 1 (<conf-loc>, <city>Turku</city>, <country>Finland</country>,
</conf-loc>) (ITiCSE 2023). Association for Computing Machinery, New York, NY,
USA, 417–423. https://doi.org/10.1145/3587102.3588819

[30] SQLsnap. 2023. SQLsnap! snap! with some extensions — snapextensions.uni-
goettingen.de. https://snapextensions.uni-goettingen.de/. [Accessed 10-12-2023].

[31] John Sweller. 2006. The worked example efect and human cognition. Learning
and Instruction 16, 2 (2006), 165–169. https://doi.org/10.1016/j.learninstruc.2006.
02.005 Recent Worked Examples Research: Managing Cognitive Load to Foster
Learning and Transfer.

[32] John Sweller, Jeroen JG Van Merrienboer, and Fred GWC Paas. 1998. Cognitive
architecture and instructional design. Educational psychology review 10 (1998),
251–296.

[33] Toni Taipalus and Ville Seppänen. 2020. SQL education: A systematic mapping
study and future research agenda. ACM Transactions on Computing Education
(TOCE) 20, 3 (2020), 1–33.

[34] Jeroen JG Van Merrienboer and John Sweller. 2005. Cognitive load theory and
complex learning: Recent developments and future directions. Educational psy-
chology review 17 (2005), 147–177.

[35] Nathaniel Weinman, Armando Fox, and Marti A. Hearst. 2021. Improving In-
struction of Programming Patterns with Faded Parsons Problems. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems (<conf-loc>,
<city>Yokohama</city>, <country>Japan</country>, </conf-loc>) (CHI ’21). As-
sociation for Computing Machinery, New York, NY, USA, Article 53, 4 pages.
https://doi.org/10.1145/3411764.3445228

[36] Matthew West, Geofrey L. Herman, and Craig Zilles. 2015. PrairieLearn: Mastery-
based Online Problem Solving with Adaptive Scoring and Recommendations
Driven by Machine Learning. In 2015 ASEE Annual Conference & Exposition.
ASEE Conferences, Seattle, Washington, 26.1238.1 – 26.1238.14. https://doi.org/
10.18260/p.24575 https://peer.asee.org/24575.

[37] Robert M West. 2021. Best practice in statistics: Use the Welch t-test when testing
the diference between two groups. Annals of Clinical Biochemistry 58, 4 (2021),
267–269.

[38] Eric Wiebe, Laurie Ann Williams, Kai Yang, and Carol S Miller. 2003. Computer
science attitude survey. Technical Report. North Carolina State University. Dept.
of Computer Science.

[39] Joseph B Wiggins, Joseph F Grafsgaard, Kristy Elizabeth Boyer, Eric N Wiebe, and
James C Lester. 2017. Do you think you can? the infuence of student self-efcacy
on the efectiveness of tutorial dialogue for computer science. International
Journal of Artifcial Intelligence in Education 27, 1 (2017), 130–153.

[40] Zihan Wu, Barbara J. Ericson, and Christopher Brooks. 2023. Using Micro Par-
sons Problems to Scafold the Learning of Regular Expressions. In Proceedings
of the 2023 Conference on Innovation and Technology in Computer Science Educa-
tion V. 1 (<conf-loc>, <city>Turku</city>, <country>Finland</country>, </conf-
loc>) (ITiCSE 2023). Association for Computing Machinery, New York, NY, USA,
457–463. https://doi.org/10.1145/3587102.3588853

[41] Rui Zhi, Min Chi, Tifany Barnes, and Thomas W. Price. 2019. Evaluating the
Efectiveness of Parsons Problems for Block-based Programming. In Proceedings of
the 2019 ACM Conference on International Computing Education Research (Toronto
ON, Canada) (ICER ’19). Association for Computing Machinery, New York, NY,
USA, 51–59. https://doi.org/10.1145/3291279.3339419

https://doi.org/10.3991/ijim.v16i20.34247
https://doi.org/10.1145/3361721.3362104
https://doi.org/10.1145/1007996.1008055
https://doi.org/10.1145/3587102.3588819
https://snapextensions.uni-goettingen.de/
https://doi.org/10.1016/j.learninstruc.2006.02.005
https://doi.org/10.1016/j.learninstruc.2006.02.005
https://doi.org/10.1145/3411764.3445228
https://doi.org/10.18260/p.24575
https://doi.org/10.18260/p.24575
https://doi.org/10.1145/3587102.3588853
https://doi.org/10.1145/3291279.3339419
https://peer.asee.org/24575
https://26.1238.14
https://goettingen.de

	Abstract
	1 Introduction
	2 Related Work
	2.1 Teaching SQL
	2.2 Parsons Problems
	2.3 Worked Example Effect and Completion Problem Effect

	3 SQL Puzzles: Micro Parsons Problems with SQL
	4 Within-Subject Think-aloud study
	4.1 Methods
	4.2 Results

	5 Between-Subjects Field Study
	5.1 Methods
	5.2 Results

	6 Discussion
	6.1 RQ1: Student preference, and their criteria for preference.
	6.2 RQ2: Perceived Advantages and Disadvantages for Input Type
	6.3 RQ3: Perceived Advantages and Disadvantages for Feedback Types of micro Parsons Problems
	6.4 RQ4: Short-Term Learning Gain and Pattern Acquisition
	6.5 Micro Parsons Problems and Novices' Misconceptions in SQL
	6.6 Reflecting on Micro Parsons Problems from a Design Perspective

	7 Limitations and Future Work
	7.1 Limitations
	7.2 Future Work

	8 Conclusion
	Acknowledgments
	References

