
Using Micro Parsons Problems to Scaffold the Learning of
Regular Expressions

Zihan Wu
ziwu@umich.edu

School of Information,
University of Michigan

Ann Arbor, Michigan, United States

Barbara J. Ericson
barbarer@umich.edu
School of Information,
University of Michigan

Ann Arbor, Michigan, United States

Christopher Brooks
brooksch@umich.edu
School of Information,
University of Michigan

Ann Arbor, Michigan, United States

ABSTRACT
Regular expressions (regex) are a text processing method widely
used in data analysis, web scraping, and input validation. However,
students find regular expressions difficult to create since they use
a terse language of characters. Parsons problems can be a more
efficient way to practice programming than typing the equivalent
code with similar learning gains. In traditional Parsons problems,
learners place mixed-up fragments with one or more lines in each
fragment in order to solve a problem. To investigate learning regex
with Parsons problems, we introduce micro Parsons problems, in
which learners assemble fragments in a single line. We conducted
both a think-aloud study and a large-scale between-subjects field
study to evaluate this new approach. The think-aloud study pro-
vided insights into learners’ perceptions of the advantages and
disadvantages of solving micro Parsons problems versus traditional
text-entry problems, student preferences, and revealed design con-
siderations for micro Parsons problems. The between-subjects field
study of 3,752 participants compared micro Parsons problems with
text-entry problems as an optional assignment in a MOOC. The
dropout rate for themicro Parsons conditionwas significantly lower
than the text-entry condition. No significant difference was found
for the learning gain on questions testing comprehensive regex
skills between the two conditions, but the micro Parsons group had
a significantly higher learning gain on multiple choice questions
which tested understanding of regex characters.

CCS CONCEPTS
• Social and professional topics → Computing education; •
Applied computing → Interactive learning environments.

KEYWORDS
regular expressions; regex; computer science education; Parsons
problems; micro Parsons problems
ACM Reference Format:
Zihan Wu, Barbara J. Ericson, and Christopher Brooks. 2023. Using Micro
Parsons Problems to Scaffold the Learning of Regular Expressions. In Pro-
ceedings of the 2023 Conference on Innovation and Technology in Computer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE 2023, July 8–12, 2023, Turku, Finland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0138-2/23/07. . . $15.00
https://doi.org/10.1145/3587102.3588853

Science Education V. 1 (ITiCSE 2023), July 8–12, 2023, Turku, Finland. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3587102.3588853

1 INTRODUCTION
Regular expressions (regex) are a text-processing method that uses
characters to define search patterns for text capture [31]. They are
widely used in data analysis, web scraping, and input validation, and
are supported by all mainstream programming languages. Despite
their power, both students [5] and even professional programmers
[22] find writing regex difficult. Previous work has proposed using
games to improve the learning of regex by stimulating students’ in-
terest [27] and providing failing test cases as feedback [5]. However,
we found no prior research that attempts to scaffold the process of
writing regex with Parsons problems [12].

Parsons problems require learners to rearrange mixed-up code
lines in the correct order instead of writing code from scratch.
Parsons problems were designed to maximize engagement, model
good code, and provide immediate feedback [26]. In traditional
Parsons problems, each block contains one or more lines of code.
They have been found to be beneficial in terms of problem-solving
efficiency [13], student engagement [14], and programming pattern
acquisition [33]. Solving Parsons problems produces equivalent
learning gains as writing code from scratch [13, 15, 33].

However, regex typically contain complicated informationwithin
a single line. To provide scaffolding for novices in regex, we intro-
duce micro Parsons problems, a type of Parsons problems that
provides code line fragments for learners to rearrange into the cor-
rect order in a single line. We shared preliminary results from our
studies in a poster [37]. With the goal of understanding the effect
of micro Parsons problems on learners, we proposed the following
research questions:

RQ1 - What are learners’ perceived advantages and dis-
advantages of micro Parsons problems compared with text-
entry regex problems and which do they prefer?

RQ2 - Compared with text-entry regex problems, how do
micro Parsons problems affect learners’ dropout rate from
an optional practice activity, problem completion time, cog-
nitive load, and learning gain?

2 RELATEDWORK
2.1 Cognitive Load Theory
Cognitive load theory (CLT) explains the relationship between
humans’ limited capacity of working memory and learning [29].
According to CLT, learning is the process of constructing and stor-
ing domain-specific knowledge in the form of schemas in long-term
memory [30]. Schemas are representations of knowledge as well as

457

https://orcid.org/0000-0002-3161-2232
https://orcid.org/0000-0001-6881-8341
https://orcid.org/0000-0003-0875-0204
https://doi.org/10.1145/3587102.3588853
https://doi.org/10.1145/3587102.3588853
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587102.3588853&domain=pdf&date_stamp=2023-06-30

ITiCSE 2023, July 8–12, 2023, Turku, Finland Zihan Wu, Barbara J. Ericson, & Christopher Brooks

information-processing mechanisms [9]; thus, the construction of
schemas is crucial for learning. For learners to construct schemas
in long-term memory, they need to first process new knowledge in
working memory. As working memory has a limited capacity, it can
become the bottleneck for learning if there is too much information
to process at once. There are two types of cognitive load: intrinsic
load and extrinsic load. Intrinsic load refers to the cognitive load
directly associated with the level of difficulty of the concept, and
extraneous load is generated by the way information is presented
to learners, and should be reduced in instructional activities to
avoid cognitive overload [30]. According to Van Merrienboer et
al. [32], replacing whole tasks, such as writing code from scratch,
with completion problems where part of the solution is provided
can reduce extraneous cognitive load. Parsons problems are a type
of code completion problem that require learners to reconstruct
the solution, and thus might reduce extraneous cognitive load for
learners [13, 15].

2.2 Parsons Problems
Parsons problems require learners to rearrange mixed-up code into
the correct order. Extra code blocks that are not part of the correct
answer, called distractors, are often included in Parsons problems
to highlight syntax errors and common misconceptions [17, 21, 26].
Parsons problems have been found beneficial in terms of problem-
solving efficiency [13], student engagement [14], and programming
pattern acquisition [33].

Researchers have also investigated different types of Parsons
problems [10, 12]. Some have investigated adaptive Parsons prob-
lems, which dynamically adjust the difficulty of Parsons problems
based on a learner’s previous performance and provide help on
demand [11]. Others explored different types of feedback provided
by Parsons problems, including line-based feedback and execution-
based feedback [19]. Another variant proposed more recently is
faded Parsons problems, in which the code blocks contain incom-
plete code with blanks that learners need to fill in [34]. Although
prior work has explored many different features of Parsons prob-
lems, we are not aware of any research on Parsons problems that
ask learners to assemble fragments in a single line [12].

2.3 Systems for Learning Regular Expressions
Most prior work on systems that help learners to learn regex are
educational games that aim to encourage practice. Regex Parser II
[27] asks learners to provide test cases for a given regex, and Learn
Regex [28] situates regex practice in a jewelry shop and asks learners
to create patterns of beads with regex syntax. Some systems explore
different types of feedback provided to the students, such as failed
examples [5, 6], descriptive hints [6], and correct/incorrect binary
feedback [6]. Many websites also provide practice that introduces
regex syntax and special symbols to learners through different
levels, such as Regex Learn [1], RegexOne [2], and RegExr [3].
Existing types of regex practice problems include writing regex to
match given strings [1, 2, 4], writing strings that match or do not
match a given regex [4, 27], or determining if the provided string
and regex matches [4]. We did not find any prior work that scaffolds
the process of constructing a regex with Parsons problems.

3 REGEX MICRO PARSONS SYSTEM
We designed a web-based tool that supports students solving regex
problems with either a micro Parsons problem or traditional free
text entry. The tool also includes other features specifically designed
for regex practice, such as real-time patternmatching. Fig. 1 displays
the interface for a micro Parsons problem.

Figure 1: An example problem in the tool with a problem
description, micro Parsons input, and supporting features
including highlighted test strings, the validity of the regex,
and the score on hidden test cases.

Similar to traditional Parsons problems, our micro Parsons in-
terface provides blocks and asks learners to rearrange them in the
correct order. We iterated the design according to the feedback
from the think-aloud study described in section 4. The final design
(shown in fig. 1) provides a list of the possible input blocks in the
top row, and learners can then drag these blocks into position on
the second row and see the execution results on the bottom.

Several important features of traditional Parsons problems were
adopted in this new context. First, the input includes distractors
(extra blocks), which require learners to compare blocks that are
easily confused. For example, a * (an asterisk which repeats the
preceding regex zero or more times) can be included in a problem
with a + (a plus which repeats the preceding regex one or more
times). Second, we adopted execution-based feedback similar to
[19, 33] that compiles the regex, provides test cases that match and
do not match, and highlights the matches in the test cases.

There are also new features that are unique to micro Parsons
problems. The most important design consideration for creating
micro Parsons problems is to maintain the atomicity of blocks. In
traditional Parsons problems, each line of code is an individual unit,
and the arrangement of blocks will not influence the interpretation
of the code. However, in micro Parsons problems the order of oper-
ations can influence the result. For example, if the blocks provided
in the micro Parsons problem include abc and + , when learners
arrange them into abc+ , the repetition only applies to the last char-
acter, which will confuse learners as they would expect the content
inside a block to be indivisible. Thus, we use parentheses to enclose
the content (abc) to maintain the intended meaning of (abc)+ .
This applies to contexts outside of regex, such as providing a + b ,
* , and c in other programming languages that support arithmetic.
In this case, we could provide (a + b) to make it clear that the
addition should happen before the multiplication. Micro Parsons
problems can contain blocks that have more than one character

458

Using Micro Parsons Problems to Scaffold the Learning of Regular Expressions ITiCSE 2023, July 8–12, 2023, Turku, Finland

(e.g. block [A-Z] , which means any upper case characters between
A and Z inclusive), just like traditional Parsons problems can have
more than one line of code in a block.

We also introduced other features based on the need for learning
regex. First, as regex sometimes includes repeated patterns, the
blocks in this system are reusable. When learners add a block to
their regex, the block in the top row does not disappear. Another
feature is to include explanations for the blocks. Regex uses many
symbols to indicate specific meanings, such as repetition (e.g. * ,
+), character sets (e.g. [abcde]), and character classes (e.g. \d).
Novices often need cheat sheets during practice. Thus, we embed-
ded explanations for the blocks in the tool in the form of a tooltip
which displays when the user pauses the cursor on a block. The in-
terface also shows what matches the regex and the score on hidden
test cases.

4 THINK ALOUD STUDY
We first conducted a within-subjects think-aloud study with eight
participants to better understand student reactions to both micro
Parsons and text-entry problems. Participants were enrolled in a
course where regex was being taught for the first time (either at
the undergraduate level or professional Masters level). During the
interview, we asked participants if they were confident about their
ability to write regex, and only two participants reported that they
were confident. Each participant spent approximately 45 minutes
on the study and received a $20 gift card for completing the study.

The study was conducted through videoconferencing software,
and we recorded the audio and participants’ screens after obtaining
consent. The participants first completed a brief tutorial on the
think-aloud process and how to use the tool, and then moved on to
work on a set of four problems from easy to difficult.

Each question had two different versions: one was a micro Par-
sons problem (MP), and the other was a traditional text-entry prob-
lem (TE). The two versions only differ in their input mechanism
and share all other features. Participants were randomly assigned
to one of the two groups. One group solved the four problems as
TE, MP, TE, MP while the other solved the exact same problems as
MP, TE, MP, TE. The goal was to reduce any possible order effects.
All participants were provided with a cheatsheet that contained
explanations of regex characters and combinations of characters.
They were asked to verbalize their thought processes while solv-
ing the problems. For each question, when they passed all test
cases or spent at least seven minutes on a problem (which was
enough time to complete the problem independently if not stuck),
they were prompted to move on to the next problem. Finally, a
semi-structured interview was conducted to gather advantages,
disadvantages, preferences, and feedback on the tool interface.

4.1 Results
4.1.1 Perceived advantages and disadvantages of micro Parsons prob-
lems. When asked their opinions about the two different types of
regex problems, all participants reported that micro Parsons prob-
lems were easier than text-entry problems. Some commented that
micro Parsons problems provided more scaffolding and were steer-
ing them in a certain direction, and they were more willing to

experiment with characters and combinations they were not famil-
iar with to form possible solutions.

Some participants expressed that micro Parsons felt more con-
strained. For example, while solving a micro Parsons problem, P7
asked "Can I just type it in myself?" They explained that it was
because they had a different solution in mind. However, this type of
constraint can also be beneficial. Some participants expressed that
they appreciated that the micro Parsons problem "forced" them to
use a limited set of characters. Learners’ behaviors in the text-entry
condition also suggested that this restriction might be necessary.
When trying tomatch a non-vowel lowercase letter in the text-entry
condition, P2 attempted to use square brackets with all 21 letters
to match a non-vowel letter, while the only option available in the
micro Parsons condition was the character set that used negation
instead: [^aeiou] .

4.1.2 Learners’ preferences for micro Parsons problems versus text-
entry problems. At the end of the interview, we asked each par-
ticipant about their preference between the micro Parsons prob-
lems and text-entry problems. All participants found micro Parsons
problems easier than text-entry problems. Four participants (50%)
preferred text-entry problems, mostly because they felt less con-
strained, and the text-entry problems felt closer to the authentic
task. Both of the participants who were confident in their ability to
create regex before the study preferred text-entry problems. Three
participants (38%) preferred micro Parsons problems, and expressed
that the blocks gave them something to start with by trying differ-
ent things. P7 expressed that they were curious about the micro
Parsons problems. This suggested that the novelty of micro Parsons
problems could be more interesting and thus more motivating for
some learners. One participant (13%) said that if their goal was
to complete the problem, they would prefer a Parsons problem,
but if their goal was to learn more, they would prefer a text-entry
problem. This is consistent with previous findings [18], in which
the researchers found that learners found Parsons problems easier
than writing textual code, but felt they would learn more while
solving text-entry problems if they were not stuck.

5 BETWEEN-SUBJECTS FIELD STUDY
We conducted a between-subjects study in a MOOC with one
condition solving micro Parsons problems and the other solving
text-entry problems in order to investigate differences in learn-
ers’ dropout rate from an optional practice activity, learning gains,
problem completion time, and cognitive load.

5.1 Participants and Procedure
With IRB approval, we conducted the study in an introductory-
level data science MOOC opened to the public. The course included
regex as a method for text manipulation. The study material was
deployed as an optional ungraded assignment for the learners to
practice regular expressions. We used MD5 to hash all students’
IDs to deidentify the data.

Upon starting the ungraded assignment, learners were randomly
assigned to one of two conditions: micro Parsons condition or text-
entry condition. As the tasks were delivered through the MOOC.
Learners could choose to exit the study or come back to where they

459

ITiCSE 2023, July 8–12, 2023, Turku, Finland Zihan Wu, Barbara J. Ericson, & Christopher Brooks

left off at any time. Learners completed a pretest, a practice session,
and a posttest in that order.

The pretest contained twomultiple-choice questions (MCQs) that
evaluated learners’ knowledge of the meaning of regex characters,
two multiple-choice-multiple-answer questions (MCMAQs) asking
learners to choose all the strings that would be matched by a given
regex, and one text-entry question asking learners to write a regex
according to a problem description. To encourage learners to answer
the questions without getting outside help, we added prompts to
remind learners that the test was not graded, and provided an "I
don’t know" for all choice-based questions. The posttest contained
the same numbers and types of questions as the pretest. Tominimize
the effect of learning from answering the pretest questions, we
created isomorphic questions that were slightly different but did
not change what regex symbols were being tested by the problem
(see fig. 2) for the second MCQ and the two MCMAQs. The first
MCQ and the text-entry regex problem were kept the same as
they mostly consisted of written descriptions, and it was difficult
to create isomorphic questions that did not change the meaning
of the problems. For the questions that had isomorphic variants,
learners randomly received one version of the isomorphic problem
in the pretest and the other version in the posttest. Learners did not
receive any feedback for their test answers until they completed
the posttest, after which they were shown the correct answers to all
the test questions. The test questions were developed based on the
practice problems such that all the characters and combinations of
characters that were tested were covered in the practice problems.
We tested the problems with three volunteers with introductory
knowledge of regex to ensure the wording of the problems was
clear prior to starting the study.

Figure 2: An example of a pair of isomorphic problems used
in the test questions.

After each participant completed a brief tutorial on the type of en-
try used in their condition (micro Parsons or text-entry), they were
redirected to the practice problems. The set of practice problems
contained five problems, four of which were the same problems as
in the think-aloud study. For each practice problem, learners could
choose to spend any time on it until they passed all test cases or
could skip the problem. When learners successfully passed all of
the test cases for a practice problem, they were asked to rate their
perceived cognitive load on the Paas scale [24], a 9-point Likert

scale with evidence for reliability and validity [25]. This scale has
been widely used to measure working memory load [23].

5.2 Results
The tool was deployed on a MOOC platform for 14 weeks, and
5,683 students clicked into the webpage for the study. 3,752 (66.02%)
learners completed the pretest, and were considered participants.
1,899 students were assigned to the Parsons group, and 1,853 stu-
dents were assigned to the text-entry group. All analysis was done
in Python with Scipy and Statsmodels packages. To verify the two
groups had a similar level of prior knowledge in regex, we used
Welch’s t-test 1 to compare the pretest score of two groups, and
no difference was found on any type of pretest questions at a 0.01
level of significance.

5.2.1 Dropout Rate From The Optional Practice Activity. Table 1
shows the number of students who dropped out (did not complete
the activities) by the end of each part of the study, and the dropout
rate of the two groups. We used a two proportion z-test to test
for a signficant difference between conditions (see table 1). Two
proportion z-tests are used to compare the proportions of two
independent samples, and produce the same p-value as the Chi-
Squared test for homogeneity (2x2).

Table 1: Two Proportion Z-Test of Dropout Rate

Parsons Text-Entry z Cohen’s
(𝑛 = 1, 899) (𝑛 = 1, 853) h
𝑛 % 𝑛 %

Prac. 896 47.18 1008 54.40 -4.42*** 0.14
Post. 1248 65.72 1311 70.75 -3.31*** 0.11
*𝑝 < 0.05; **𝑝 < 0.01; ***𝑝 < 0.001.

There was a significant difference in the dropout rate during
the practice problems by condition (p <.001). During the practice
problem session, around 47% (896 of 1,899) of the micro Parsons
group dropped out (did not complete the activities), and around
54% (1,008 of 1,853) of the text-entry group dropped out. There was
also a significant difference between the dropout rates by the end
of the posttest (p <.001). By the end of posttest, around 66% (1,248
of 1,899) of the micro Parsons group dropped out, and around 71%
(1,311 of 1,853) of the text-entry group dropped out.

5.2.2 Problem Completion Time. The problem completion time
was computed as the elapsed time between the point when the
learner navigated to the page for each practice problem and when
the learner passed all the test cases for a problem. After observing
that the median time spent on each problem was under 12 minutes,
we removed outliers who spent more than an hour on one problem,
as they probably took breaks while solving a single problem.

We also performed a Welch’s t-test according to [8, 35] and cal-
culated Hedge’s g as the effect size [7] for the time spent for both
groups on each practice problem (see table 2). For the first three
practice problems, there was a significant difference between the
1According to [8, 35], Welch’s t-test is preferred over a Student’s t-test in the social
sciences, especially when the two groups have unequal sample sizes.

460

Using Micro Parsons Problems to Scaffold the Learning of Regular Expressions ITiCSE 2023, July 8–12, 2023, Turku, Finland

Table 2: T-Test for Problem Completion Time

Parsons Text-Entry t p g
𝑛 𝑥 𝜎 𝑛 𝑥 𝜎

1 765 5.0 35.6 390 12.3 126.4 -12.0*** <.001 0.90
2 781 4.5 38.9 437 9.7 111.5 -9.3*** <.001 0.64
3 784 4.4 32.8 475 5.9 53.5 -3.9*** <.001 0.24
4 471 11.9 118.6 370 12.1 120.9 -0.2 0.807 0.02
5 378 14.1 120.6 274 14.2 124.3 -0.1 0.909 0.01
*𝑝 < 0.05; **𝑝 < 0.01; ***𝑝 < 0.001.

average time taken to complete a micro Parsons problem and the
average time taken to complete the equivalent text-entry problem
(p <.001 for all three problems), and the average time taken for
micro Parsons problems was lower than the text-entry condition.
However, there was no statistically significant difference by con-
dition for the last two practice problems that were designed to be
more difficult.

5.2.3 Cognitive Load. We also used aWelch’s t-test to understand if
there was a difference between conditions in terms of self-reported
cognitive load (see table. 3). For the first two practice problems,
learners’ self-reported cognitive load from the Parsons group was
significantly lower than the text-entry group (p <.001). The average
reported cognitive load by the micro Parsons group for the first two
problems was 4.81 and 4.45, and the average reported cognitive load
for the text-entry group was 5.33 and 5.03. For the fourth problem,
learners from the Parsons group reported a significantly higher
cognitive load (p <.001).

Table 3: T-Test for Self-Reported Cognitive Load

Parsons Text-Entry t p g
𝑛 𝑥 𝜎 𝑛 𝑥 𝜎

1 801 4.8 2.8 456 5.3 2.5 -5.5*** <.001 0.32
2 804 4.5 2.9 479 5.0 2.9 -5.9*** <.001 0.34
3 811 4.3 3.0 501 4.2 2.9 1.4 0.168 0.08
4 519 6.0 2.4 399 5.3 2.8 6.9*** <.001 0.46
5 392 6.2 2.6 294 6.0 2.7 2.1* 0.040 0.16
*𝑝 < 0.05; **𝑝 < 0.01; ***𝑝 < 0.001.

5.2.4 Learning Gain. We calculated the participants’ scores includ-
ing the two multiple-choice questions (MCQs) that were testing
learners’ abilities to recall the meaning of regex characters (2 points,
one point for each question), two multiple-choice-multiple-answer
questions (MCMAQs) that were testing learners’ abilities to read
regex and identify corresponding strings (8 points, one point for
each option) (see fig. 2), and one text-entry question (10 points, one
point for each unit test) to test learners’ abilities to write a regex.
The learning gain was calculated by subtracting an individual’s
pretest score from their posttest score. Scores for the different types
of problems were calculated separately as they were intended to
test different skills, and it is difficult to assign appropriate weights
on each type of problem to compute a full mark.

Table 4: T-Test for Learning Gain

Question Parsons Text-Entry t p g
Type (n = 651) (n = 542)

𝑥 𝜎 𝑥 𝜎

MCQs 0.61 1.40 0.36 2.18 5.25*** <.001 0.30
MCMAQs 0.56 4.04 0.55 4.25 0.11 0.913 0.01
Text-Entry 0.84 3.74 0.89 3.74 -0.26 0.796 0.02
*𝑝 < 0.05, **𝑝 < 0.01., ***𝑝 < 0.001

A Welch’s t-test was performed on the pretest score of par-
ticipants in two groups, and no significant difference was found
between the two groups for any type of question. We also used
a Welch’s t-test to compare the learning gain of the two indepen-
dent groups as suggested by [8, 35] (see table 4). For MCQs that
were testing the understanding of regex symbols (full points: 2), the
average learning gain for learners in the micro Parsons problem
group was 0.61, which was significantly higher (p <.001) from the
text-entry group, whose average learning gain was 0.36. There was
no significant difference by condition for the MCMAQs and the
text-entry regex problem that were testing the more comprehensive
abilities to identify strings that can be matched by a given regex
(p = 0.913) and write a regex according to a problem description (p
= 0.796). We also performed a Welch’s t-test on the pretest score
of participants who completed both the pretest and the posttest in
the two groups, and no difference was found on any type of test
questions using a 0.01 level of significance.

6 DISCUSSION
RQ1: Perceived advantages and disadvantages of micro Parsons prob-
lems and learners’ preferences. In our first study, we observed several
potential benefits of micro Parsons problems over traditional text-
entry problems for some learners. First, micro Parsons problems
can be more motivating for some learners since they are puzzle-like.
Second, micro Parsons can provide more scaffolding by limiting the
problem space. For novices who are not familiar with regex, micro
Parsons problems provide a limited set of characters or groups
of characters for them to start with, instead of going through a
cheat sheet or other resources to locate characters that might be
useful. In the think-aloud study, some participants expressed that
the scaffolding made them feel more comfortable exploring their
own solutions and experimenting with unfamiliar combinations of
characters. Third, the limit in solution space guarantees learners’
exposure to certain characters or groups of characters that they
might not attempt to use otherwise, which can be particularly use-
ful in an instructional setting. However, certain features of micro
Parsons problems are also considered disadvantages for some learn-
ers. The limited solution space, for example, takes away some of
the learners’ freedom to create solutions that are not supported by
the given blocks in a micro Parsons problem. This is an example of
the expertise reversal effect [20, 29], an effect predicted by cogni-
tive load theory, where the information intended to provide more
scaffolding for novices becomes redundant for advanced learners
who have already constructed internal schemas. In addition, micro
Parsons problems are not perceived as ideal for learners who want
to practice in an authentic environment.

461

ITiCSE 2023, July 8–12, 2023, Turku, Finland Zihan Wu, Barbara J. Ericson, & Christopher Brooks

Regarding learners’ preferences, we found that learners have
mixed preferences towards micro Parsons problems and text-entry
problems, which is consistent with prior findings [18].

In general, learners perceive micro Parsons problems as easier
than text-entry problems regardless of their prior experience. Regex
contains many characters and one regex problem can often be
solved by many different regex patterns. One of the major features
of micro Parsons problems is that they limit the solution space,
which leads to both advantages and disadvantages as shown in our
think-aloud study.

RQ2: Micro Parsons reduced the dropout rate for optional regex
practice activities. Our study showed that using micro Parsons prob-
lems can reduce the dropout rate for optional practice activities
with regex in a MOOC compared with traditional text-entry prob-
lems (see 5.2.1). Several potential reasons might have contributed to
this result. First, micro Parsons problems provided more scaffolding
than plain text-entry regex problems, and guaranteed that learners
always had something to experiment with when they felt stuck.
Learners’ subjective feedback was also supportive of micro Parsons
problems’ ability to provide scaffolding. Second, as suggested by
participants’ reasons for preferring micro Parsons problems, they
might be more enjoyable to solve and less daunting. As discovered
by [16], both enjoyment and perceived difficulty of the content
have effects on learners’ dropout behavior in MOOC. According to
the expectancy-value theory of motivation [36], intrinsic value (en-
joyment) also correlates with learners’ choice to continue learning
activities.

RQ2: Micro Parsons problems’ effect on problem-solving time and
self-reported cognitive load varied by problem. A significant differ-
ence in problem completion time between conditions was found for
the first three practice problems, which were designed to be easier.
The decrease in problem completion time in Parsons conditions
might be because micro Parsons problems provided more scaffold-
ing, or the drag-and-drop interactions were easier to perform than
text entry. With respect to cognitive load, a significant difference
between the two groups was found for the first two problems (the
two easiest problems) and the fourth problem.

The different effects on easy and hard problems could be related
to the differences in the dropout rate by condition, which are fur-
ther discussed in section 7. It is also possible that although micro
Parsons problems were able to provide scaffolding for simple regex
problems, they did not provide enough scaffolding for learners for
more complex regex problems.

In the analysis of self-reported cognitive load, problem four
demonstrated a reverse pattern as the micro Parsons condition
group reported a significantly higher cognitive load. We identified
one potential reason. Our micro Parsons tool included a UI compo-
nent "expandable blocks", which automatically expanded a pair of
parentheses into two blocks. In problem four, when learners clicked
the (?:) block, it automatically expanded to (?: and) , which
might have been an unexpected result. Learners were only briefly
exposed to this type of block in the tutorial. Thus, it is possible
that this feature added extraneous cognitive load for learners in the
Parsons condition.

RQ2: The micro Parsons group had a significantly better learning
gain on the two MCQs testing the recall of regex characters or char-
acters combinations, but no significant difference was found for the

more complex type of test problems. The higher learning gain on the
recall MCQs in the Parsons group could be from direct exposure to
regex character combinations and the tooltips that explained the
meaning of the block. The second MCQ tested the understanding of
a non-capturing group (?:) , which was included as a block in the
fourth practice problem in the micro Parsons group. Learners had
to use a non-capturing group to solve the problem and the explana-
tion of the block was also included in the tool which ensured the
exposure. Although the text-entry group received the same problem
description, they can bypass the use of the non-capturing group
by using additional parentheses around the whole regex. This can
serve as an example of using micro Parsons problems to ensure
exposure to specific characters and character combinations instead
of only using what the learner already knows. However, we did not
find a significant difference between conditions for the MCMAQs
and text-entry questions that required more comprehensive skills
in regex.

7 LIMITATIONS AND FUTUREWORK
One limitation of the think-aloud study is the limited number of
participants. As the field study was unsupervised in nature, there
are several limitations, one of which is related to the selection effect.
During the study, learners could decide to drop out at any time,
and as observed in section 5.2.1, there was a significant difference
between the dropout rate between the two groups. This might result
in a different selection effect for the two groups in the study. The
micro Parsons condition might have kept learners who are less
competent in regex, and who would have otherwise dropped out
in the text-entry condition due to frustration. Thus, the learning
gain, cognitive load, and problem-solving time could be effected
by the significant difference in dropout rate. Future work should
investigate the effect in other contexts where differential dropout
is less likely, such as in a classroom study. As the field study was
deployed as a completely optional assignment, we only included a
limited number of questions in the pretest and the posttest. This
limits the generalizability of the learning gain in this study, and
also suggests that future work can further explore micro Parsons
problems’ effect on learning gain with more questions in the pretest
and posttest. In addition, as the study was an optional assignment
in a MOOC, people who entered the study could be motivated to
learn and practice, which limits the generalizability of the result to
a broader population. As participants were not supervised during
the study, it was also possible that they navigated away from the
page or even searched for answers.

This research was the first to explore the use of the micro Parsons
problems to scaffold learning regex. It found that a significantly
higher percentage of students completed the practice problems in
the micro Parsons condition than in the text-entry condition, which
provides evidence that they successfully scaffolded or motivated
some students during regex practice. It also provided evidence that
micro Parsons practice resulted in significantly better learning gains
with respect to particular characters/character combinations than
the text-entry condition. We plan to explore the potential benefits
of micro Parsons problems in different contexts, such as for creating
SQL statements or when creating a single line of Java code. Future
work can also explore the transition from using micro Parsons
problems to the authentic task of text-entry problems.

462

Using Micro Parsons Problems to Scaffold the Learning of Regular Expressions ITiCSE 2023, July 8–12, 2023, Turku, Finland

REFERENCES
[1] 2023. Regex Learn - Regex Interactive Course. https://regexlearn.com/learn
[2] 2023. RegexOne - Learn Regular Expressions. https://regexone.com/
[3] 2023. RegExr: Learn, Build, & Test RegEx. https://regexr.com/
[4] Pavel Azalov, Michelle Cullen, and Robert Rinish. 2004. ReExpress: a tutor

for regular expressions mentoring with technology. In Proceedings of the 5th
conference on Information technology education. 268–268.

[5] ChristopherW. Brown and Eric A. Hardisty. 2007. RegeXeX: an interactive system
providing regular expression exercises. ACM SIGCSE Bulletin 39, 1 (March 2007),
445–449.

[6] Loris D’antoni, Dileep Kini, Rajeev Alur, Sumit Gulwani, Mahesh Viswanathan,
and Björn Hartmann. 2015. How can automatic feedback help students construct
automata? ACM Transactions on Computer-Human Interaction (TOCHI) 22, 2
(2015), 1–24.

[7] Marie Delacre, Daniel Lakens, Christophe Ley, Limin Liu, and Christophe Leys.
2021. Why Hedges’g* s based on the non-pooled standard deviation should be
reported with Welch’s t-test. (2021).

[8] Marie Delacre, Daniël Lakens, and Christophe Leys. 2017. Why psychologists
should by default use Welch’s t-test instead of Student’s t-test. International
Review of Social Psychology 30, 1 (2017).

[9] Paul DiMaggio. 1997. Culture and cognition. Annual review of sociology 23 (1997).
[10] Yuemeng Du, Andrew Luxton-Reilly, and Paul Denny. 2020. A Review of Research

on Parsons Problems. In Proceedings of the Twenty-Second Australasian Computing
Education Conference. 195–202.

[11] Barbara Ericson, Austin McCall, and Kathryn Cunningham. 2019. Investigating
the Affect and Effect of Adaptive Parsons Problems. In Proceedings of the 19th
Koli Calling International Conference on Computing Education Research. 1–10.

[12] Barbara J Ericson, Paul Denny, James Prather, Rodrigo Duran, Arto Hellas, Juho
Leinonen, Craig S Miller, Briana B Morrison, Janice L Pearce, and Susan H Rodger.
2022. Parsons Problems and Beyond: Systematic Literature Review and Empirical
Study Designs. Proceedings of the 2022 Working Group Reports on Innovation and
Technology in Computer Science Education (2022), 191–234.

[13] Barbara J. Ericson, James D. Foley, and Jochen Rick. 2018. Evaluating the efficiency
and effectiveness of adaptive parsons problems. In Proceedings of the 2018 ACM
Conference on International Computing Education Research. 60–68.

[14] Barbara J Ericson, Mark J Guzdial, and Briana B Morrison. 2015. Analysis of
interactive features designed to enhance learning in an ebook. In Proceedings of the
Eleventh Annual International Conference on International Computing Education
Research. 169–178.

[15] Barbara J. Ericson, Lauren E. Margulieux, and Jochen Rick. 2017. Solving parsons
problems versus fixing and writing code. In Proceedings of the 17th Koli Calling
International Conference on Computing Education Research. 20–29.

[16] Thommy Eriksson, Tom Adawi, and Christian Stöhr. 2017. “Time is the bottle-
neck”: a qualitative study exploring why learners drop out of MOOCs. Journal of
Computing in Higher Education 29, 1 (2017), 133–146.

[17] Kyle James Harms, Jason Chen, and Caitlin L Kelleher. 2016. Distractors in
Parsons problems decrease learning efficiency for young novice programmers.
In Proceedings of the 2016 ACM Conference on International Computing Education
Research. 241–250.

[18] Carl C. Haynes and Barbara J. Ericson. 2021. Problem-Solving Efficiency and
Cognitive Load for Adaptive Parsons Problems vs. Writing the Equivalent Code.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–15.

[19] Juha Helminen, Petri Ihantola, Ville Karavirta, and Satu Alaoutinen. 2013. How do
students solve parsons programming problems?–execution-based vs. line-based

feedback. In 2013 Learning and Teaching in Computing and Engineering. IEEE,
55–61.

[20] Slava Kalyuga. 2009. The expertise reversal effect. In Managing cognitive load in
adaptive multimedia learning. IGI Global, 58–80.

[21] Ville Karavirta, Juha Helminen, and Petri Ihantola. 2012. A mobile learning
application for parsons problems with automatic feedback. In Proceedings of the
12th koli calling international conference on computing education research. 11–18.

[22] Louis G. Michael, James Donohue, James C. Davis, Dongyoon Lee, and Francisco
Servant. 2019. Regexes are hard: Decision-making, difficulties, and risks in pro-
gramming regular expressions. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 415–426.

[23] Fred Paas, Juhani E Tuovinen, Huib Tabbers, and Pascal WM Van Gerven. 2016.
Cognitive load measurement as a means to advance cognitive load theory. In
Educational psychologist. Routledge, 63–71.

[24] Fred G Paas. 1992. Training strategies for attaining transfer of problem-solving
skill in statistics: A cognitive-load approach. Journal of educational psychology
84, 4 (1992), 429.

[25] Fred GWC Paas, Jeroen JG Van Merriënboer, and Jos J Adam. 1994. Measurement
of cognitive load in instructional research. Perceptual and motor skills 79, 1 (1994),
419–430.

[26] Dale Parsons and Patricia Haden. 2006. Parson’s programming puzzles: a fun
and effective learning tool for first programming courses. In Proceedings of the
8th Australasian Conference on Computing Education-Volume 52. 157–163.

[27] Ariel Rosenfeld, Abejide Ade-Ibijola, and Sigrid Ewert. 2017. Regex Parser II:
Teaching Regular Expression Fundamentals via Educational Gaming. In ICT Edu-
cation (Communications in Computer and Information Science), Janet Liebenberg
and Stefan Gruner (Eds.). Springer International Publishing, Cham, 99–112.

[28] Julie M Smith. 2020. Learn Regex: A Novel Tool for Learning Regular Expressions.
In Proceedings of the 21st Annual Conference on Information Technology Education.
293–293.

[29] John Sweller. 1988. Cognitive load during problem solving: Effects on learning.
Cognitive science 12, 2 (1988), 257–285.

[30] John Sweller. 1994. Cognitive load theory, learning difficulty, and instructional
design. Learning and instruction 4, 4 (1994), 295–312.

[31] Ken Thompson. 1968. Programming techniques: Regular expression search
algorithm. Commun. ACM 11, 6 (1968), 419–422.

[32] Jeroen JG Van Merrienboer and John Sweller. 2005. Cognitive load theory and
complex learning: Recent developments and future directions. Educational psy-
chology review 17, 2 (2005), 147–177.

[33] Nathaniel Weinman, Armando Fox, and Marti A Hearst. 2021. Improving instruc-
tion of programming patterns with faded parsons problems. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 1–4.

[34] Nathaniel Weinman, Armando Fox, and Marti A. Hearst. 2021. Improving In-
struction of Programming Patterns with Faded Parsons Problems. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems. 1–4.

[35] Robert MWest. 2021. Best practice in statistics: Use the Welch t-test when testing
the difference between two groups. Annals of Clinical Biochemistry 58, 4 (2021),
267–269.

[36] Allan Wigfield and Jacquelynne S Eccles. 2000. Expectancy–value theory of
achievement motivation. Contemporary educational psychology 25, 1 (2000),
68–81.

[37] Zihan Wu, Barbara Ericson, and Christopher Brooks. 2021. Regex Parsons: Using
Horizontal Parsons Problems to Scaffold Learning Regex. In Proceedings of the
21st Koli Calling International Conference on Computing Education Research. 1–3.

463

https://regexlearn.com/learn
https://regexone.com/
https://regexr.com/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Cognitive Load Theory
	2.2 Parsons Problems
	2.3 Systems for Learning Regular Expressions

	3 Regex Micro Parsons System
	4 Think Aloud Study
	4.1 Results

	5 Between-subjects Field Study
	5.1 Participants and Procedure
	5.2 Results

	6 Discussion
	7 Limitations and Future Work
	References

