
Evaluating Micro Parsons Problems as ExamQuestions
Zihan Wu∗

University of Michigan
Ann Arbor, MI, USA
ziwu@umich.edu

David H. Smith IV∗

University of Illinois
Urbana, IL, USA

dhsmith2@illinois.edu

ABSTRACT
Parsons problems are a type of programming activity that present
learners with blocks of existing code and requiring them to arrange
those blocks to form a program rather than write the code from
scratch. Micro Parsons problems extend this concept by having
students assemble segments of code to form a single line of code
rather than an entire program. Recent investigations into micro
Parsons problems have primarily focused on supporting learners
leaving open the question of micro Parsons efficacy as an exam
item and how students perceive it when preparing for exams.

To fill this gap, we included a variety of micro Parsons problems
on four exams in an introductory programming course taught in
Python. We use Item Response Theory to investigate the difficulty
of the micro Parsons problems as well as the ability of the questions
to differentiate between high and low ability students. We then
compare these results to results for related questions where students
are asked to write a single line of code from scratch. Finally, we
conduct a thematic analysis of the survey responses to investigate
how students’ perceptions of micro Parsons both when practicing
for exams and as they appear on exams.

CCS CONCEPTS
• Social and professional topics → Computing education.

KEYWORDS
Parsons Problems, CS1, Assessment, micro Parsons Problems

ACM Reference Format:
Zihan Wu and David H. Smith IV. 2024. Evaluating Micro Parsons Problems
as Exam Questions. In Proceedings of the 2024 Innovation and Technology in
Computer Science Education V. 1 (ITiCSE 2024), July 8–10, 2024, Milan, Italy.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3649217.3653583

1 INTRODUCTION
Learning to program is difficult for beginners. Researchers have
been working to design pedagogical activities for learners that are
engaging and welcoming for novices. To improve student engage-
ment, present models for good practice, and provide immediate
feedback, Parsons and Haden [21] designed Parsons problems as

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE 2024, July 8–10, 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0600-4/24/07
https://doi.org/10.1145/3649217.3653583

an alternative type of practice. Instead of asking learners to write
code from scratch, Parsons problems provide mixed-up code blocks
and require learners to identify the blocks needed in the correct
solution and rearrange them into the correct order. As a type of
completion problem, Parsons problemsmake programming practice
less challenging for beginners by reducing the problem space.

In traditional Parsons problems, each code block contains at least
one line of code. Micro Parsons problems extended this concept by
focusing on a single line of code. It provides small code fragments
for learners and asks them to form a code statement in one line. Prior
work on micro Parsons problems has studied its effect on learners
as practice questions, and found that it reduced the time needed
for learners to complete the problems, encouraged more learners
to complete optional practice tasks, and resulted in comparable
learning gain as writing code from scratch [31].

For traditional Parsons problems, Denny et al. [6] evaluated their
effectiveness as exam items, and found that students’ performances
on these problems are highly correlated with code writing tasks.
As a fine-grained variation of Parsons problems, micro Parsons
problems also have the potential to be used as exam items. However,
existing literature on micro Parsons problems focuses on their
benefits for learners, leaving an unaddressed question concerning
their effectiveness as exam items.

This paper aims to bridge this gap by conducting an empirical
investigation of using micro Parsons problems within the context
of exams and exam preparation materials in an introductory pro-
gramming course. We investigate the following research questions:

RQ1: What are the psychometric properties (e.g., item difficulty
and discrimination) of micro Parsons problems and how do
these compare to those of single line code writing problems?

RQ2: What are students perceptions and preferences when com-
paring micro Parsons problems to single line code writing
problems for the purposes of studying and when they appear
on summative assessments?

2 BACKGROUND
2.1 Parsons and Micro Parsons Problems
Parsons problems, as introduced by Parsons and Haden [21], are a
programming activity typically used in introductory courses. They
provide a scaffolded environment to construct programs, presenting
students with blocks of code that they must rearrange to form a
solution rather than having them write that code from scratch. This
problem type has shown a variety of benefits for learners such as
improving learning efficiency [9], improving engagement [10, 18,
21], reducing cognitive load [3, 12, 19], improving the motivation of
students [16]. Researchers have designed many variants of Parsons
problems and investigated students’ perceptions [6, 17, 20].

674

https://orcid.org/0000-0002-3161-2232
https://orcid.org/0000-0002-6572-4347
https://doi.org/10.1145/3649217.3653583
https://doi.org/10.1145/3649217.3653583
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649217.3653583&domain=pdf&date_stamp=2024-07-03


ITiCSE 2024, July 8–10, 2024, Milan, Italy Zihan Wu and David H. Smith IV

A recently introduced variant of Parsons problems is micro Par-
sons problems [29, 30]. Whereas in traditional Parsons problems
students are asked to vertically arrange blocks that each contain
at least one line of code, micro Parsons problems require students
to arrange smaller code fragments horizontally to form a single
line of code. The motivation for this variation is to transfer the
positive impacts that have been found with respect to traditional
Parsons problems to other domains where the construction of a
single line of code or expression is the core learning objective (e.g.,
regex, SQL). Much like prior investigations into traditional Parsons
problems, initial investigations into micro Parsons have also fo-
cused on the impacts of utilizing them as a tool for learning [31].
Given the recency of this variety of Parsons problem, additional
investigations to fully explore the effectiveness of this problem type
in both formative and summative contexts are warranted.

2.2 Parsons Problems as Exam Items
Though both the original purpose of Parsons problems and much
of the research that has followed has focused on their use as a tool
for learning [8], several studies have investigated their utility as an
exam item. Denny et al. [6] provided the first of these investigations.
They identified that students’ performance in Parsons problems
was highly correlated with performance on code writing tasks,
suggesting both items measure a similar skill. Similarly, Poulsen
et al. [23] found that proof writing questions presented in a format
similar to Parsons Problems, termed “Proof Blocks”, still provided
ample information on students’ proof writing abilities.

Denny et al. [6] make additional recommendations on the design
of Parsons problems for exams suggesting that: (1) incorrect blocks
of code (termed distractors) should be visually grouped with their
correct alternatives to minimize cognitive load and (2) the inclusion
of syntax that indicates structure (e.g., curly braces, indentation)
can be used to provide hints on the correct response. With respect
to the former design consideration involving the use of distractors,
more recent work has indicated that the presence of distractors
increasing the difficulty of the item compared to not having distrac-
tors. However, their presence was shown to have a minimal impact
on Parsons problems quality as an exam item at the cost of students
spending substantially more time on the problem [24–27]. Similar
investigations informing the design and utility of micro Parsons as
an exam item have yet to be performed.

2.3 Measurement Theory
Central to evaluating a question type as an exam item is selecting
a tool set for performing that evaluation. Additionally, the goal of
the assessment must be identified and in order to determine how
its items can be improved to meet that goal. There are multiple
ways to evaluate the type of questions. In the case of the study by
Denny et al. [6], one of the goals was to identify if Parsons problems
evaluated a skill similar to code writing. Other criteria outside of
this work include the difficulty of the item, and the ability of the
question to delineate between students who are adept at a given
skill and those who are not. By improving these characteristics of
the items that make up an exam we can improve the measurement
ability of the exam as a whole [7].

A common approach for examining the characteristics of an
item is Item Response Theory (IRT). IRT models the probability of a
student of a given ability (𝜃 ) to respond to a problem with a variety
of estimated parameters that characterize a given item. There are
a variety of models in the IRT family, each characterized by the
number of parameters it includes. For example, the 2 Parameter
Logistic Model (2PL)

𝑃𝑖 (𝜃 ) =
1

1 + 𝑒−(𝑎𝑖 · (𝜃−𝑏𝑖 ) )

includes parameters for estimating item discrimination (𝑎) and
difficulty (𝑏) [4, 5]. Difficulty is characterized by the ability level
at which a student has a 50% chance of responding correctly to
a question and discrimination how sharply an item distinguishes
between students at a that given difficulty level. The 3PL model
adds a third parameter generally referred to as “pseudo-guessing”
which estimates a lower asymptotic bound and is interpreted as the
probability of a low-ability student guessing the correct solution [4].
The 4PLmodel adds a final fourth parameter for estimating an upper
asymptotic bound which is often referred to as “carelessness” or
“slip” and is interpreted as the probability of an otherwise high
ability student responding incorrectly to the question [2].

3 METHODS
3.1 Course Context and Data Collection
To evaluate our research questions, we designed a variety of micro
Parsons problems and deployed them on exams in a large intro-
ductory Python course. The course aims at undergraduate students
with non-tech majors such as business majors, and covers basic
Python topics including Python Collections, loops, and basic classes
and objects. Students are given four proctored exams throughout
the semester along with a practice exam generator released a week
before each exam. These exam generators allow students to con-
tinuously generate practice exams, which draw questions from a
bank of questions defined by the instructor.

The number of students sitting each exam varied throughout the
semester due to attrition, with 437 taking the first exam and 418
taking the final. All exams are computer-based and delivered via
an open-source assessment platform called PrairieLearn [28]. This
platform enables students to receive immediate feedback on the
correctness of a submission and facilitates partial credit by allowing
students to make multiple attempts on a question for a reduced
number of points for each subsequent attempt.

Beyond micro Parsons problems, these exams contain the follow-
ing other question types: 1) code writing question, 2) traditional
parsons problems, 3) single-line code writing problems (Figure 2),
3) code fixing problems, 4) short answer code comprehension ques-
tions, and 5) code tracing questions. Collection of this data, as well
as all other data collected in this course, was approved by the insti-
tutional ethics review board at the institution where the study was
conducted.

3.2 Problem Design
Two variations of micro Parsons problems were deployed in the
course. In the first two exams the included problems asked students
to arrange the given blocks to form a single, independent line of

675



Evaluating Micro Parsons Problems as ExamQuestions ITiCSE 2024, July 8–10, 2024, Milan, Italy

(a) Standard micro Parsons - The first variation of micro Parsons prob-
lems as used on exams one and two.

(b) Fill-in-the-Blank micro Parsons - The second variation of Parsons
problems as used on exams three and four.

Figure 1: The two variations of Parsons problems used in the course.

Figure 2: An example of a single-line programming question

code that accomplished a given task (Figure 1a). In the remaining
two exams, students were given an existing segment of code with
a single line of code removed. For these problems, students were
asked to arrange blocks to “fill in the blank” such that the segment
of code as a whole accomplished its given task (Figure 1b). In both
cases, the micro Parsons problems included jumbled distractors
reduce the possibility of guessing the correct solution. Additionally,
students were given partial credit for incorrect attempts based on
the number of blocks they positioned correctly.

3.3 Student Survey
In addressing RQ2, students were given an end-of-course survey
on their perceptions of the micro Parsons problems and how they
compared to single-line programming questions. First, students
were asked to provide their general thoughts in comparing the two
question types in short answer format. Following that, students
were asked two multiple choice asking which question type they
preferred where the options were: (1) Micro Parsons, (2) Single Line
Code Writing, and (3) No Preference. The questions are as follows:

Q1: Which question type do you prefer to appear on exams?
Q2: Which question type do you prefer to appear on study mate-

rials (e.g., practice exams)?

In association with each multiple choice question was a short an-
swer question which asked students to expand on their preference.

4 RQ1: DIFFICULTY AND DISCRIMINATION
To address RQ1 the scores students received on questions were
dichotomized based on the success of a student’s first attempt. This
is done to enable analysis with a 2PL IRT model, which requires the
use of dichotomized scores. The reason for fitting the model based
on the correctness of a student’s first attempt rather than their best
attempt is, given students can attempt a question multiple times,
many questions were ultimately answered correctly by all or a large
majority of students. This would prevent those questions from being
included when fitting the model, as 2PL IRT does not support the
inclusion of questions with one response category (i.e., all correct
or all incorrect). We fit a 2PL IRT model for each exam to determine
the item difficulty and item discrimination statistics for the items
that appear on those exams. To aid in the interpretation of the
item-discrimination statistics, figures use the thresholds presented
by Baker [1] of: Very Low (≤ 0.34), Low (0.35 − 0.64), Moderate
(0.65 − 1.34), High (1.35 − 1.69), and Very High (> 1.7).

For the comparison between single-line code writing problems
and micro Parsons problems, we selected a total of 17 single-line
code writing questions that appeared alongside the micro Parsons
problems on exams. These questions cover related topics (e.g., string
slicing, boolean expressions, file opening) but are not identical in
format to the micro Parsons. As such, their results are included to
help contextualize the item statistics for micro Parsons – given they
are a related item testing similar concepts – rather than provide a
one-to-one comparison.

4.1 Results
Overall, the micro Parsons problems appeared to generally have
low difficulty (Figure 3a) coefficients with moderate discrimination
(Figure 3b). These results indicate that the problems, in general,
appear to do a reasonable job of differentiating between students
is the lower ability range. Comparing the distribution of difficulty

676



ITiCSE 2024, July 8–10, 2024, Milan, Italy Zihan Wu and David H. Smith IV

2 1 0 1 2 3 4
Difficulty

Boolean Expression
Min Item in List
Max Item in List

Conditional String Length
Max Index in List

Slice the Middle of a String
File Open for Append
File Open for Reading

File Open for Write
Iterations List Break

Loop Analysis Find Number
While Loop Count

Qu
es

tio
n 

ID

Exam 1 Exam 2 Exam 3 Exam 4

(a) Item difficulty statistics from the 2PL model for each of the micro
Parsons included on exams. Coefficients are interpreted as the ability
level at which a student has a 50% chance of answering correctly.

0.0 0.5 1.0 1.5 2.0 2.5
Discrimination

Boolean Expression
Min Item in List
Max Item in List

Conditional String Length
Max Index in List

Slice the Middle of a String
File Open for Append
File Open for Reading

File Open for Write
Iterations List Break

Loop Analysis Find Number
While Loop Count

Qu
es

tio
n 

ID

Very
Low Low Moderate High Very High

Exam 1 Exam 2 Exam 3 Exam 4

(b) Item discrimination statistics from 2PLmodel for each of the micro
Parsons included on exams. The thresholds for item discrimination
(e.g., howwell an item distinguishes between students above and below
a given ability level) from Baker [1] are presented as well.

Figure 3: The Item-Difficulty and Item-Discrimination statistics for the items used in this study.

0 1 2 3
Discrimination

Very
Low Low Moderate High Very High

2 1 0 1 2 3 4
Difficulty

Single Line Code Writing Micro Parsons

Figure 4: Comparison of the distributions of item-difficulty
and item-discrimination statistics for micro Parsons and
single-line code writing questions

and discrimination statistics for micro Parsons and single-line pro-
gramming questions we find that both appear to have similar dis-
tributions of difficulty but single-line code writing problems have
higher item-discrimination (Figure 4). This indicates that on aver-
age the item functions for students of lower ability and single-line
code writing questions provide a more sharp delineation between
students at that ability level.

In looking at Figure 3a, the one notable exception to this trend
are the questions relating to opening a file which appeared on exam
three. These questions had exceptionally high difficulty compared
to micro Parsons which appeared on other exams. These questions
differed from their counterparts in that the student was required to
read the surrounding code and, based on the indentation, determine
whether to open the file using only the open() function or using
with-as. In looking at the incorrect submissions we find that 34% of

all incorrect submissions attempted to use with-as. This highlights
a potential connection exists between the distractors that are chosen
in micro Parsons and the provided code for which the students are
intended to fill in the blanks.

5 RQ2: STUDENT PERCEPTIONS AND
PREFERENCES

In total, we collected survey responses from 390 students. Two
researchers independently coded the first 50 responses to develop
an initial code book. Upon iterating and finalizing the code book
on the first 50 responses, the researchers independently coded
the next 50 to establish an interrater agreement. The inter-rater
agreement, Krippendorf’s alpha, was 𝛼 = 0.7, which was sufficient
for preliminary conclusion [15]. One of the researchers coded the
remaining 290 responses according to the established code book.

5.1 Results
We collected anonymous responses from 390 students asking which
question types they preferred, both in the context of exams and
practice. When asked about the preferred type of question to appear
on the exam, 163 (41%) students chose micro Parsons problems, 138
(35%) chose single-line code writing questions, and 89 (23%) stu-
dents chose no preference. For practice, however, the most popular
response was no preference (n = 160, 41%), while 134 (34%) students
preferred single-line code writing questions, and 96 (25%) students
preferred micro Parsons problems.

Several themes emerged from students’ responses in explaining
their choices and comparing the two types of problems.

5.1.1 Perceived Difficulty. When comparing the two types of prob-
lems, 83 students (21%) explicitly noted that they thought micro
Parsons problems were easier. Among them, 13 students felt that mi-
cro Parsons problems provided hints compared to the single-line
code writing question, especially when they did not know where

677



Evaluating Micro Parsons Problems as ExamQuestions ITiCSE 2024, July 8–10, 2024, Milan, Italy

to start: “micro parsons are good to give you a head start on the topic
and help you out a bit, [single-line code writing] questions kind of
mess you up if you don’t know where to start.” (P308) Fifteen students
felt that micro Parsons problems were easier in exams because they
provided partial credit for incorrect responses.

Contrary to prior within-subjects think-aloud studies on Parsons
problems where all participants find them easier than writing code
from scratch [13], in our survey responses, 50 students (13%) felt
that micro Parsons problems are more difficult than single-line code
writing problems. “I found that the micro Parsons were slightly more
difficult as I had to try to think through the code with what was given
instead of trying to think it through on my own.” (P23) In our study,
only micro Parsons problems contained the fill-in-the-blank type
of problems, which can also contribute to the perceived difficulty.

5.1.2 Assisting Learning. Most students reported that they found
both types of problems beneficial for learning. Meanwhile, 36 stu-
dents (9%) specifically pointed out that micro Parsons are helpful
for learning, because they struggle less and can practice specific
parts of a single line. They felt that micro Parsons problems pro-
vide examples of how the code lines should look like, provide
better feedback on which part of the solution was incorrect, and
require less memorization: “it is more in line with how actual
coding is: you do not have to memorize a lot of stuff, you should
know the concept and the ways to look for the information.” (P98)
On the other hand, 32 (8%) students explicitly mentioned that the
single-line code-writing questions helped them learn. They felt
these questions involve “actual coding” and shows what they
actually know. They felt that having less help could force them
memorize better or apply more high-level thinking.

Interestingly, learners’ comments on which variation they think
better helps learning do not always align with their selected prefer-
ences for homework or exams. Many students explicitly said they
preferred the practice exams to “have the same format of questions”
that would appear on the exam. (P159) For the exam questions, stu-
dents chose micro Parsons problems because they provide extra
credits when the answers are incorrect.

5.1.3 Confusing Distractors. A total of 40 students (10%)mentioned
that micro Parsons problems could be confusing at times. Specif-
ically, 10 students offered complaints about the distractors in the
micro Parsons problems. Some suggested removing all distractors,
or providing a “use all blocks” prompt for those problems that do
not contain distractors: “Usually with the micro Parsons problems I
tend to overthink my answer and end up getting the question wrong.
All the extra blocks are confusing.” (P215) Most of the time, the dis-
tractors contain minor problems that novices tend to make, such
as the use of square brackets instead of parentheses, or ignoring
quotation marks around string literals, and minor logic errors (e.g.,
and vs or). Four students explicitly expressed their annoyance with
these distractors: “it is extremely annoying when micro parsons prob-
lems include wrong blocks because it only feels like they are trying to
trip me up based on reading errors.” (P292)

6 DISCUSSION
From our results we highlight and expand on three takeaways: 1)
the ability of micro Parsons problems to provide partial credit and
simplified feedback; 2) commentary on how distractor selection can

Figure 5: The feedback and partial credit mechanism used
for our implementation of micro Parsons.

in some cases significantly impact item difficulty; 3) the expertise
reversal effect and its potential impact on the design of micro Par-
sons; and 4) the relationship between the presence of distractors
and confusion students encountered on micro Parsons problems.
Each of these serves to inform the design and use of micro Parsons
as an item used on exams and practice materials alike.

6.1 Feedback and Partial Credit with Micro
Parsons Problems

As noted by students in the qualitative results, one of the key differ-
ences between micro Parsons problems and single-line code writing
problems is the limited solution space enforced by requiring stu-
dents to arrange predefined blocks. As noted by Denny et al. [6] –
though in the context of traditional Parsons problems – this enables
more straightforward scoring for instructors. However, a notable
difference between the micro Parsons used in this study and those
used in the investigations of Denny et al. [6] is our study uses an
online platform to deliver the questions whereas their used a paper
based exam. The ability to receive instantaneous feedback andmake
multiple attempts allows forwards these benefits onto students as
well both during the exam and while practicing.

As noted by many students, the use of single-line code writing
problems and micro Parsons alike was well received as many stu-
dents viewed as questions as testing them on and allowing them to
practice elements of larger programs in isolation. Though it may
be the case that micro Parsons problems have less discriminating
power relative to single-line code writing questions there are other
considerations that instructors may have beyond these metrics. By
reducing the error space and providing feedback that is easier to
interpret for this class of programming problem it is likely that the
students’ experience is improved. This is particularly a considera-
tion in the context of practice exams, such as the ones our students
encountered, as it scaffolds their studying process.

6.2 Distractor Selection for Fill-in-the-Blank
As discussed in the quantitative results (Section 4), the fill-in-the-
blank micro Parsons (see fig. 1b) had much higher item-difficulties
any other micro Parsons problem or single line code writing ques-
tion. In these questions, students were presented with all the blocks
needed to open a file either using with-as or simply storing the
result of open() in a variable. The intention was for students to
infer from the code they were completing that with-as was not
appropriate given it requires any manipulation of the file to be

678



ITiCSE 2024, July 8–10, 2024, Milan, Italy Zihan Wu and David H. Smith IV

done underneath it in an indented block. This problem highlights a
unique connection that can be made between the distractors chosen
and the context of the code the student is required to complete in
micro Parsons problems for languages where whitespace is seman-
tic.

6.3 Potential Expertise Reversal Effect
From the student survey, we discovered that some students per-
ceived micro Parsons problems as more difficult than writing code
from scratch. This finding differs from prior work that included
within-subject studies for students to compare micro Parsons prob-
lems or regular Parsons problemswithwriting code from scratch [13,
31]. One potential explanation is the expertise reversal effect. It
refers to the situation where some instructional methods designed
for novices become inefficient or have negative consequences for
advanced learners [14]. According to cognitive load theory, the in-
structional methods for novices usually contain extra information
and guidance. However, expert learners already possess schema-
based knowledge, which provides internal guidance. Expert learners
need to resolve and reconcile the two different sets of guidance,
which can introduce extra burdens in working memory.

As pointed out by some students in the qualitative analysis, con-
structing solutions only by given blocks can sometimes be even
more difficult when they already have a plain-code answer in mind.
The hints, in this case, the blocks, can become extra guidance that
is not needed by expert learners and cause a burden for them. This
is particularly a consideration when selecting distractor blocks as
the inclusion of plausible alternatives – and thus more blocks –
may increase the prevalence and impact of this effect. This may
be considered a desirable difficulty in practice materials for illus-
trating alternative solutions. However, in summative assessments
this added difficulty may stem from the question format rather
than the content being tested. This finding highlights the careful
consideration that should be taken when selecting the number of
blocks, and distractors, that are included in a solution space.

6.4 Confusing Distractors
In our qualitative results, we discovered that some students found
micro Parsons problems confusing. The major complaint is the
distractors. Only a few students elaborated on their confusion,
explaining that they felt that the distractors were too tricky. There
are two interpretations behind students’ perception of the trickiness
of the distractors. First, students felt that sometimes it was too
difficult to identify the correct blocks versus the distractors; It
is also possible that the complaints reflected that they deem the
difficulty unnecessary.

Although distractors received complaints from some students,
prior work in the context of traditional Parsons problems suggests
they may be useful for learning. Prior work on proof blocks, a type
of Parsons problem for mathematical proofs has shown that learn-
ers who completed proof blocks with distractors performed better
on the post-test than those who completed proof blocks without dis-
tractors, though the difference was not statistically significant [22].
In a multi-institutional multi-national study, learners who prac-
ticed with distractors were also found to have better performances
on fixing code that contains similar errors in the distractors than

those who did not [11]. Considering the importance of debugging
and fixing code, especially with the development of generative AI
tools, it is likely distractors will become increasingly important for
learning.

Meanwhile, the visual presentation of the distractors can also
affect students’ perceptions. Similar to previous research on micro
Parsons problems, we only used jumbled distractors in this study.
Because micro Parsons problems require learners to rearrange code
in one line, the design of interfaces for visual grouping distrac-
tors with their correct alternatives is not as straightforward. In
our study, no student provided concrete examples of distractors
that they found confusing. Future research should investigate the
attributes that make distractors confusing for learners, and exam-
ine the effective ways to add distractors that can reduce confusion
while maintaining item difficulty and item discrimination.

7 LIMITATIONS AND FUTUREWORK
There are several limitations to the results of our study that can af-
fect its generalizability. First, only a small number of micro Parsons
were used throughout the semester. More questions and question
versions would need to be created to provide a more complete and
accurate picture of how micro Parsons function as an exam item
and how they compare to related text-entry code writing questions.

Second, a limitation of the quantitative analysis of this work
is that the comparison of item-discrimination statistics between
micro Parsons problems and single-line code writing problems was
at a categorical level. That is, we did not create pairs of questions
with identical solutions and compare them. As such, our results
comparing the item discrimination and difficulty distributions are
more suited to contextualize the results for micro Parsons using a
related code writing exercise.

A final limitation is students had access to practice exams which
contained both the single line code writing problem generators
used on exams and micro Parsons that covered related topics to
those on their exams. This likely had the impact of lowering the
difficulty of the items compared to if fully novel questions were
used on the exams.

8 CONCLUSION
This study employed micro Parsons problems as exam items across
four exams, and adopted measurement theory to analyze its effec-
tiveness. We calculated the item difficulty and item discrimination
of micro Parsons problems as well as traditional single-line code
writing problems across the semester. In this study, we found that
micro Parsons questions are comparable in difficulty but slightly
lower in discrimination compared to writing code from scratch. We
also found insights that are worth future exploration from our stu-
dent survey. Students displayed diverse preferences when it came
to micro Parsons problems and single-line code questions in exam,
largely based on their perceived potential to earn more points. We
found a potential expertise reversal effect from student response
that considered micro Parsons problems harder than writing code
from scratch, whichmotivates further inquiries into the ideal design
for micro Parsons problems used in exams.

679



Evaluating Micro Parsons Problems as ExamQuestions ITiCSE 2024, July 8–10, 2024, Milan, Italy

REFERENCES
[1] Frank B Baker. 2001. The basics of item response theory. ERIC.
[2] Mark A Barton and Frederic M Lord. 1981. An upper asymptote for the three-

parameter logistic item-response model. ETS Research Report Series 1981, 1 (1981),
i–8.

[3] Jeff Bender, Bingpu Zhao, Alex Dziena, and Gail Kaiser. 2023. Integrating Parsons
puzzleswithin Scratch enables efficient computational thinking learning. Research
and Practice in Technology Enhanced Learning 18 (2023), 022–022.

[4] Allan Birnbaum. 1968. Some latent trait models and their use in inferring an
examinee’s ability. Statistical theories of mental test scores (1968).

[5] André F De Champlain. 2010. A primer on classical test theory and item response
theory for assessments in medical education. Medical education 44, 1 (2010),
109–117.

[6] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a new exam
question: Parsons problems. In Proceedings of the Fourth International Workshop
on Computing Education Research (Sydney, Australia) (ICER ’08). Association for
Computing Machinery, New York, NY, USA, 113–124. https://doi.org/10.1145/
1404520.1404532

[7] Robert L Ebel and David A Frisbie. 1972. Essentials of educational measurement.
[8] Barbara J. Ericson, Paul Denny, James Prather, Rodrigo Duran, Arto Hellas,

Juho Leinonen, Craig S. Miller, Briana B. Morrison, Janice L. Pearce, and Su-
san H. Rodger. 2022. Parsons Problems and Beyond: Systematic Literature Re-
view and Empirical Study Designs. In Proceedings of the 2022 Working Group
Reports on Innovation and Technology in Computer Science Education (<conf-
loc>, <city>Dublin</city>, <country>Ireland</country>, </conf-loc>) (ITiCSE-
WGR ’22). Association for Computing Machinery, New York, NY, USA, 191–234.
https://doi.org/10.1145/3571785.3574127

[9] Barbara J. Ericson, James D. Foley, and Jochen Rick. 2018. Evaluating the Efficiency
and Effectiveness of Adaptive Parsons Problems. In Proceedings of the 2018 ACM
Conference on International Computing Education Research (Espoo, Finland) (ICER
’18). Association for Computing Machinery, New York, NY, USA, 60–68. https:
//doi.org/10.1145/3230977.3231000

[10] Barbara J. Ericson, Mark J. Guzdial, and Briana B. Morrison. 2015. Analysis of
Interactive Features Designed to Enhance Learning in an Ebook. In Proceedings of
the Eleventh Annual International Conference on International Computing Educa-
tion Research (Omaha, Nebraska, USA) (ICER ’15). Association for Computing Ma-
chinery, New York, NY, USA, 169–178. https://doi.org/10.1145/2787622.2787731

[11] Barbara J. Ericson, Janice L. Pearce, Susan H. Rodger, Andrew Csizmadia,
Rita Garcia, Francisco J. Gutierrez, Konstantinos Liaskos, Aadarsh Padiyath,
Michael James Scott, David H. Smith, Jayakrishnan M. Warriem, and Angela
Zavaleta Bernuy. 2023. Multi-Institutional Multi-National Studies of Parsons
Problems. In Proceedings of the 2023 Working Group Reports on Innovation and
Technology in Computer Science Education. Association for Computing Machinery,
New York, NY, USA, 57–107. https://doi.org/10.1145/3623762.3633498

[12] Geela Venise Firmalo Fabic, Antonija Mitrovic, and Kourosh Neshatian. 2019.
Evaluation of Parsons problems with menu-based self-explanation prompts in a
mobile python tutor. International Journal of Artificial Intelligence in Education
29 (2019), 507–535.

[13] Carl C. Haynes and Barbara J. Ericson. 2021. Problem-Solving Efficiency and
Cognitive Load for Adaptive Parsons Problems vs. Writing the Equivalent Code.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(<conf-loc>, <city>Yokohama</city>, <country>Japan</country>, </conf-loc>)
(CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 60,
15 pages. https://doi.org/10.1145/3411764.3445292

[14] Slava Kalyuga. 2009. The expertise reversal effect. In Managing cognitive load in
adaptive multimedia learning. IGI Global, 58–80.

[15] Klaus Krippendorff. 2018. Content analysis: An introduction to its methodology.
Sage publications.

[16] Amruth N. Kumar. 2017. The Effect of Providing Motivational Support in Parsons
Puzzle Tutors. In Artificial Intelligence in Education, Elisabeth André, Ryan Baker,
Xiangen Hu, Ma. Mercedes T. Rodrigo, and Benedict du Boulay (Eds.). Springer
International Publishing, Cham, 528–531.

[17] Brooke Morin and Krista M Kecskemety. 2021. Collaborative Parsons Problems
in a Remote-learning First-year Engineering Classroom. In 2021 ASEE Virtual

Annual Conference Content Access.
[18] Brooke CMorin, Krista M Kecskemety, Kathleen AHarper, and Paul Alan Clingan.

2020. Work in Progress: Parsons Problems as a Tool in the First-Year Engineering
Classroom. In 2020 ASEE Virtual Annual Conference Content Access.

[19] Briana B. Morrison, Lauren E. Margulieux, Barbara Ericson, and Mark Guzdial.
2016. Subgoals Help Students Solve Parsons Problems. In Proceedings of the 47th
ACM Technical Symposium on Computing Science Education (Memphis, Tennessee,
USA) (SIGCSE ’16). Association for Computing Machinery, New York, NY, USA,
42–47. https://doi.org/10.1145/2839509.2844617

[20] Solomon Sunday Oyelere, Friday Joseph Agbo, Ismaila Temitayo Sanusi, Abdul-
lahi Abubakar Yunusa, and Kissinger Sunday. 2019. Impact of puzzle-based learn-
ing technique for programming education in Nigeria context. In 2019 IEEE 19th
International Conference on Advanced Learning Technologies (ICALT), Vol. 2161.
IEEE, 239–241.

[21] Dale Parsons and Patricia Haden. 2006. Parson’s programming puzzles: a fun
and effective learning tool for first programming courses. In Proceedings of the
8th Australasian Conference on Computing Education-Volume 52. 157–163.

[22] Seth Poulsen, Hongxuan Chen, Yael Gertner, Benjamin Cosman, Matthew West,
and Geoffrey L Herman. 2023. Measuring the Impact of Distractors on Student
Learning Gains while Using Proof Blocks. arXiv preprint arXiv:2311.00792 (2023).

[23] Seth Poulsen, Mahesh Viswanathan, Geoffrey L Herman, and Matthew West.
2022. Evaluating proof blocks problems as exam questions. ACM Inroads 13, 1
(2022), 41–51.

[24] David H. Smith, Max Fowler, and Craig Zilles. 2023. Investigating the Role
and Impact of Distractors on Parsons Problems in CS1 Assessments. In Proceed-
ings of the 2023 Conference on Innovation and Technology in Computer Science
Education V. 1 (<conf-loc>, <city>Turku</city>, <country>Finland</country>,
</conf-loc>) (ITiCSE 2023). Association for Computing Machinery, New York, NY,
USA, 417–423. https://doi.org/10.1145/3587102.3588819

[25] David H. Smith and Craig Zilles. 2023. Discovering, Autogenerating, and Eval-
uating Distractors for Python Parsons Problems in CS1. In Proceedings of the
54th ACM Technical Symposium on Computer Science Education V. 1 (<conf-loc>,
<city>Toronto ON</city>, <country>Canada</country>, </conf-loc>) (SIGCSE
2023). Association for Computing Machinery, New York, NY, USA, 924–930.
https://doi.org/10.1145/3545945.3569801

[26] David H. Smith, IV, Seth Poulsen, Max Fowler, and Craig Zilles. 2023. Comparing
the Impacts of Visually Grouped and Jumbled Distractors on Parsons Problems
in CS1 Assessments. In Proceedings of the ACM Conference on Global Computing
Education Vol 1 (<conf-loc>, <city>Hyderabad</city>, <country>India</country>,
</conf-loc>) (CompEd 2023). Association for Computing Machinery, New York,
NY, USA, 154–160. https://doi.org/10.1145/3576882.3617927

[27] David H. Smith IV. 2023. Useful Distractions? Investigating the Utility of
Distractors in Parsons Problems. In Proceedings of the 2023 ACM Conference
on International Computing Education Research - Volume 2 (Chicago, IL, USA)
(ICER ’23). Association for Computing Machinery, New York, NY, USA, 62–63.
https://doi.org/10.1145/3568812.3603463

[28] Matthew West, Geoffrey L Herman, and Craig Zilles. 2015. Prairielearn: Mastery-
based online problem solving with adaptive scoring and recommendations driven
by machine learning. In 2015 ASEE Annual Conference & Exposition. 26–1238.

[29] Zihan Wu. 2023. Investigating the Effectiveness of Variations of Micro Parsons
Problems. In Proceedings of the 2023 ACM Conference on International Computing
Education Research - Volume 2 (Chicago, IL, USA) (ICER ’23). Association for
Computing Machinery, New York, NY, USA, 120–122. https://doi.org/10.1145/
3568812.3603447

[30] Zihan Wu, Barbara Ericson, and Christopher Brooks. 2021. Regex Parsons: Using
Horizontal Parsons Problems to Scaffold Learning Regex. In Proceedings of the 21st
Koli Calling International Conference on Computing Education Research (Joensuu,
Finland) (Koli Calling ’21). Association for Computing Machinery, New York, NY,
USA, Article 31, 3 pages. https://doi.org/10.1145/3488042.3489968

[31] Zihan Wu, Barbara J. Ericson, and Christopher Brooks. 2023. Using Micro Par-
sons Problems to Scaffold the Learning of Regular Expressions. In Proceedings
of the 2023 Conference on Innovation and Technology in Computer Science Educa-
tion V. 1 (<conf-loc>, <city>Turku</city>, <country>Finland</country>, </conf-
loc>) (ITiCSE 2023). Association for Computing Machinery, New York, NY, USA,
457–463. https://doi.org/10.1145/3587102.3588853

680

https://doi.org/10.1145/1404520.1404532
https://doi.org/10.1145/1404520.1404532
https://doi.org/10.1145/3571785.3574127
https://doi.org/10.1145/3230977.3231000
https://doi.org/10.1145/3230977.3231000
https://doi.org/10.1145/2787622.2787731
https://doi.org/10.1145/3623762.3633498
https://doi.org/10.1145/3411764.3445292
https://doi.org/10.1145/2839509.2844617
https://doi.org/10.1145/3587102.3588819
https://doi.org/10.1145/3545945.3569801
https://doi.org/10.1145/3576882.3617927
https://doi.org/10.1145/3568812.3603463
https://doi.org/10.1145/3568812.3603447
https://doi.org/10.1145/3568812.3603447
https://doi.org/10.1145/3488042.3489968
https://doi.org/10.1145/3587102.3588853

	Abstract
	1 Introduction
	2 Background
	2.1 Parsons and Micro Parsons Problems
	2.2 Parsons Problems as Exam Items
	2.3 Measurement Theory

	3 Methods
	3.1 Course Context and Data Collection
	3.2 Problem Design
	3.3 Student Survey

	4 RQ1: Difficulty and Discrimination
	4.1 Results

	5 RQ2: Student Perceptions and Preferences
	5.1 Results

	6 Discussion
	6.1 Feedback and Partial Credit with Micro Parsons Problems
	6.2 Distractor Selection for Fill-in-the-Blank
	6.3 Potential Expertise Reversal Effect
	6.4 Confusing Distractors

	7 Limitations and Future Work
	8 Conclusion
	References



