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ABSTRACT

Gaze-only input techniques in VR face the challenge of avoiding
false triggering due to continuous eye tracking while maintaining
interaction performance. In this paper, we proposed GazeDock, a
technique for enabling fast and robust gaze-based menu selection
in VR. GazeDock features a view-fixed peripheral menu layout that
automatically triggers appearing and selection when the user’s gaze
approaches and leaves the menu zone, thus facilitating interaction
speed and minimizing the false triggering rate. We built a dataset
of 12 participants’ natural gaze movements in typical VR applica-
tions. By analyzing their gaze movement patterns, we designed
the menu UI personalization and optimized selection detection al-
gorithm of GazeDock. We also examined users’ gaze selection
precision for targets on the peripheral menu and found that 4–8
menu items yield the highest throughput when considering both
speed and accuracy. Finally, we validated the usability of GazeDock
in a VR navigation game that contains both scene exploration and
menu selection. Results showed that GazeDock achieved an average
selection time of 471ms and a false triggering rate of 3.6%. And it
received higher user preference ratings compared with dwell-based
and pursuit-based techniques.

Index Terms: Human-centered computing—Human computer in-
teraction (HCI)—HCI design and evaluation methods—User studies;
Human-centered computing—Human computer interaction (HCI)—
Interaction paradigms—Virtual reality

1 INTRODUCTION

With the increasing popularity of virtual reality (VR) and augmented
reality (AR), menu selection – one of the most basic interactions –
has attracted more and more attention from both the academia and
the industry. To support this, mainstream products tend to use hand-
held controllers or hand gestures. However, there is also a great
demand for hands-free menu selection in VR/AR, as it is preferred
or required when the users’ hands are occupied by other tasks or
disabled (situationally or permanently).

With recent advances in eye-tracking technologies, gaze interac-
tion in VR/AR has become one of the major solutions for hands-free
interaction. Different from using specialized interaction devices,
gaze input actions are highly mixed with natural gaze movements,
which introduces the challenge of balancing efficiency and robust-
ness: efficient gaze input techniques require the designed gaze ac-
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tions to be simple and fast, which, at the same time, causes the
“Midas Touch” problem [23] (i.e., false triggering of the input).

Corresponding with this challenge, a crucial feature of practi-
cal gaze-based input techniques is the ability to coexist with other
tasks: users should be able to switch between the current task (e.g.,
menu selection) and other interaction tasks. To achieve this, some
researchers leveraged auxiliary input modalities (e.g., manual in-
put [30,42]) to “enable” the technique before use, and “disable” them
after use. However, these solutions cannot be applied to gaze-only
interactions (e.g., people with disabilities). And although there were
gaze-only techniques that facilitate the selection of items from a UI
layout (e.g., dwelling on an optimized menu layout [24, 57]), it is
not trivial to design interactions to “call out” the menu before selec-
tion. Alternatively, some researchers proposed to trigger commands
without a menu layout (e.g., pursuit [25] and gaze gestures [5]), but
at the cost of lower speed or higher memorizing efforts.

In this paper, we proposed GazeDock, a technique for enabling
fast and robust gaze-only menu selection in VR. GazeDock features a
peripheral menu – a ring-shaped menu layout fixed in the peripheral
region of the user’s field of view (FOV, see Fig. 10a), with menu
items arranged radially. By default, GazeDock is invisible to the user
to avoid distraction in other tasks. When the user’s gaze approaches
the periphery of his/her FOV, GazeDock will fade in automatically,
and the menu item that is gazed at will be selected and highlighted.
The selection would be confirmed and GazeDock fades out when
the user moves his/her gaze out of the menu region.

GazeDock has three advantages: 1) The menu layout only occu-
pies the periphery region of FOV when displayed, which minimizes
the occlusion of background contents, and improves the immersion
in VR scenes; 2) Selection on GazeDock can be completed without
an explicit operation for menu triggering, which facilitates input
efficiency and the users’ learning process; 3) As we will show in this
paper, the specially designed layout and gaze selection mechanism
of GazeDock makes it highly distinguishable from users’ natural
gaze movements, making it compatible with other tasks in real VR
applications.

We iteratively conducted three user studies when designing and
evaluating GazeDock. In Study 1, we collected users’ natural gaze
movement data in four typical types of real VR applications, and
analyzed the distribution of their gaze points. Based on the results,
we designed the personalized menu interface and selection detection
algorithms of GazeDock. In Study 2, we examined users’ gaze
selection precision on the peripheral menu, and optimized the layout
of GazeDock. In Study 3, we validated the performance and usability
of GazeDock in a VR game, where both exploration and menu
selection tasks existed.

Our contributions were three-folded: 1) we examined the patterns
of user’s natural gaze movement in typical VR tasks, as well as
their target selection ability on the peripheral of their FOV; 2) we
proposed GazeDock, which leveraged a personalized peripheral
menu and specially designed selection mechanism to enable fast and
robust gaze input in VR; 3) we provided the first empirical results
that evaluated and compared the usability of GazeDock, dwell-based
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and pursuit-based techniques in VR applications where different
interaction tasks coexist.

2 RELATED WORK

2.1 Gaze-Based Input Techniques

A number of gaze-only approaches have been proposed including
dwelling [4, 23, 46], gaze gestures [3, 5, 17, 21, 38, 61], gaze pur-
suit [9, 10, 25, 44, 55], vergence eye movement [27, 28] and hy-
brid [6, 20]. However, commercial products suffer from the “Midas
Touch” problem [23], i.e., humans’ natural and unintentional gaze
movement may cause false triggering of these techniques. This
problem becomes more severe in VR because of the continuous gaze
tracking. Aiming at this problem, an explicit mode switch operation
(e.g., button click) is often required to indicate intentional gaze input
or trigger the “gaze mode” [30, 42]. In addition, the gaze input area
was often separated from the main area [20] or device [16], and
gaze input patterns were often complicated to avoid confusion with
natural gaze movements [5]. As a result, previous works mainly
focused on the gaze input performance in controlled tasks (e.g., tar-
get acquisition) while paying less attention to the performance in
real scenarios where natural gaze movements exist. GazeBar [7] ex-
plored to leverage the edge of the PC monitor for robust gaze-based
menu selection, which shared similar ideas with this work. However,
it has not yet been optimized with regard to the user’s gaze behavior,
especially in virtual reality. In this work, we not only modelled
the users’ gaze behavior on a peripheral menu, but also provided
the evaluation result of GazeDock in compound tasks where both
natural gaze movement and intended gaze selection co-existed.

To improve the usability of gaze, researchers have also explored
combining gaze input with other modalities (e.g., head movement).
Previous researches [30, 45, 48, 56] have studied the performance
of hybrid techniques with gaze and head movements in target ac-
quisition tasks. Results showed pointing with only gaze was error
prone, but could be improved by coupling with the head. Gaze
input can also be enhanced by head turn actions [35, 39] or head
gestures [34, 50] to increase the expressiveness or help the disam-
biguation. Manual input tasks could also be assisted by gaze (e.g.,
cursor control [41, 51, 60], interest identification [29] and remote
pointing in VR [42]). Although effective in specific scenarios, un-
fortunately, these techniques could not be applied to gaze-only input
tasks.

2.2 Menu Selection With Gaze

Menu selection is a fundamental input task in VR. Menus in VR are
often presented in a view-fixed layout [36] to support gaze selection
despite of head rotation. Previous works have explored different
kinds of menus. Gaze on a standard-size linear menu could be
improved by the dynamic expansion of menu items [57] with a
39% speed increase and higher accuracy. However, the problem
of false triggering has not been considered. A pie menu works
well for gaze input due to its circular range for selection. Previous
researches [24, 54] have tested the selection performance on such
menus with different layout, densities and input modalities. Results
showed that gaze-only input was superior to gaze+speech input,
and the optimal number of items on a pie menu was six. Snap
Clutching [20] allowed the users to glance at different directions
to enter different input modes, and then use dwelling to trigger
different commands. This design could avoid false triggering in
most cases. However, the performance of this technique was not
formally evaluated. In comparison with these works, in this paper,
we explored gaze-based menu selection on a novel menu layout
where items are located radially on the periphery of FOV, and we
tested the user’s interaction performance with different settings. The
results not only served as foundations of GazeDock, but also could
benefit other gaze-based VR techniques.

2.3 Other Hands-Free Input Techniques in VR

Hands-free input is needed when users’ hands are engaged in other
tasks. Voice input is a common approach for command invoking
on smart devices, but it suffers from environmental noise and lower
privacy. In comparison, head movement is more widely-adopted
in VR and comes with the ability of motion tracking with only the
headset device. Input techniques using only head [8] have been well
explored in literature, which often served as the substitute of hand
input (head tilt for navigation [52] and head gesture for command
input [58]). Input techniques using other body parts have also been
proposed. For example, VR navigation can be achieved in situ by
walking-in-place with feet [53] or leaning the torso [31]. Among
these techniques, Periphery Menus [37] was the most similar with
GazeDock, which allowed the users to rotate their heads to call out
the hidden menu. However, they did not optimize the menu layout
or selection mechanism for gaze input.

2.4 Understanding Gaze Behaviors

To better understand human’s gaze behaviors, we mainly go through
researches in the neuroscience field. Freedman [12] found that hu-
man’s natural eye movement range was within 40˜45◦ from the
center, while head movement would be involved for wider targets.
Bdler et al. [2] found that when playing games in virtual environ-
ments showed on computer screens, user’s gaze positions mostly
distributed in the central region, but peripheral gaze also existed. Re-
cently, Sitzmann et al. [49] found that gaze statistics in VR seemed to
be in good agreement with those in conventional displays. However,
the results mainly focused on saliency rather than gaze movement.

Eye-head coordination is an important feature when analyzing
gaze movement. In a study conducted in a natural environment
with rhesus monkey subjects [13], researchers found that in general,
eye movement did not exceed an amplitude of 35◦ because head
movement would contribute more when the shift of the focused
target was larger. A study about eye, head and torso coordination
during gaze shifts [47] showed more than 90% of eye-in-head angles
were distributed in -20˜20◦, and the authors argued that eye, head
and torso movements are not unimodal but coupled. A comparison of
eye-head coordination between VR and physical world [40] showed
head movements played more roles in VR when viewing stimuli.

In this work, we collected and analyzed users’ natural gaze data
in real VR scenarios, which would be helpful for the design and
implementation of VR techniques.

3 STUDY 1: EXAMINING NATURAL GAZE BEHAVIOUR IN VR

In this study, we examined users’ natural gaze movement pattern in
typical VR applications, with the aim to facilitate the design of false-
triggering-prevention algorithms for GazeDock. The collected data
can also be helpful for future researchers to analyze other patterns or
to test the false-triggering-prevention ability of their own techniques.

3.1 Apparatus

We used HTC Vive Pro Eye [1] as the apparatus. The resolution
of the display was 1440×1600 pixels per eye (2880×1600 pixels
combined) with an FOV of 110◦. The embedded eye-tracking system
in the device can detect the user’s gaze direction with an error of
0.5-1.1◦ in the frequency of 120Hz. The trackable field of view was
also 110◦. We recorded gaze data with the C++ interface of HTC
SRanipal SDK.

3.2 Participants

We recruited 12 participants (8 male, 4 female, aged 19-28) from
the campus. Participants had experience with VR for 2.2 years on
average, ranging from 0 to 4 years.

833

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 23,2025 at 18:10:32 UTC from IEEE Xplore.  Restrictions apply. 



3.3 Experiment Design and Procedure
In order to observe the most natural gaze movement pattern, the
participants were asked to use different VR applications to complete
the corresponding tasks freely. Referring to previous works [62], we
chose four different types of applications (see Fig. 1) which covered
a majority of fundamental interactions in VR (e.g., navigation, object
manipulation, distant pointing and menu selection): 1) Island Jour-
ney [19]: a first-person shooting game. The task was to look around
and shoot the enemies with the gun (VR controller) on the user’s
hand; 2) Drop [18]: a working simulation application. The task was
to type on a virtual keyboard to search for three news websites and
one video website, and browse the contents; 3) Rec Room [15]: a
multi-player online platform. The task was to transport between
two rooms and explore them, as well as interacting with objects in
the room (e.g., stairs, drawers and basketballs); 4) Blocks [14]: a
3D design tool. One hand controls a drawing cursor and the other
hand is used as a toolbox. The task was to try all tools and build a
creation.

Each participant used the four applications in random order. For
each app, they first familiarized themselves with the application for
several minutes, and then used it for 5–10 minutes to complete the
tasks. A short break was enforced between different applications.
The whole experiment lasted for about forty minutes.

Figure 1: The four applications used in Study 1: (a) Island Journey,
(b) Drop, (c) Rec Room, (d) Blocks.

3.4 Results
In total, we collected 2,873,288 frames, 399 minutes of gaze data
from all 12 participants. We obtained the 3D direction of the partici-
pant’s gaze (x,y,z) in each frame, and calculated gaze angle θ and
polar angle φ using:{

θ = arccos((x,y,z) · (0,0,1)) = arccos(z)
φ = atan2(y,x)

(1)

We labeled all the data by participant ID and application, and made
the dataset publicy available,1 which would be helpful for not only
understanding user’s gaze behaviors, but also designing and evaluat-
ing future gaze-based interaction techniques (e.g., testing the false
triggering rate).

3.4.1 General Gaze Distribution
We visualized the collected gaze points as a heat map in Fig. 2. A
large proportion of gaze points gathered near the center of FOV (the
area colored in red), and most of the gaze points distributed in a
slightly flat elliptical range. This result was in line with the range of
eye movement from previous works [26], where the range of gaze

1anonymous for review.

was horizontally symmetric, while the range in up direction was
smaller than that in down direction. Furthermore, we examined the
range including a certain proportion of gaze points. The angular
ranges which included 99.0%, 99.7% and 99.9% of all participants’
gaze data in left, right, up and down directions were showed in Fig. 2
and Table 1.

Figure 2: Heat map of the gaze points from all participants. The
concentric circles indicated gaze angles θ . The contour indicated
the range covering a certain percentage of gaze points.

This result inspired us to design a menu in the periphery of users’
FOV. As most gaze points scattered around the center of FOV, the
possibility that the user’s gaze enters the menu unintentionally would
be low. Meanwhile, previous work [26] has showed that humans
can intentionally move their gaze to a larger range than in natural
condition: 44◦ in left, right and down directions, and 28◦ in up
direction. Therefore the peripheral menu can still be accessed by
users using intentional gaze movement.

Table 1: The angular ranges of all/individual participants which
covered 99.0%, 99.7% and 99.9% of gaze data in different directions.
Minimum and maximum range was showed in parentheses.

Left Right Up Down

C
ol

le
ct

iv
e 99.0% 33.4◦ 29.5◦ 16.5◦ 33.8◦

99.7% 37.3◦ 36.0◦ 23.5◦ 36.7◦

99.9% 41.9◦ 38.9◦ 29.7◦ 39.0◦

In
di

vi
du

al

99.0% 32.9±4.4◦

(26.4-40.1◦)
27.1±4.7◦

(21.6-36.0◦)
18.9±5.1◦

(12.7-28.1◦)
31.5±3.6◦

(26.3-39.0◦)

99.7% 36.3±4.6◦

(29.4-43.4◦)
34.7±5.9◦

(22.4-43.4◦)
22.5±6.6◦

(13.8-36.7◦)
34.4±3.4◦

(29.8-41.7◦)

99.9% 39.3±4.6◦

(31.6-47.2◦)
36.0±6.5◦

(22.6-44.8◦)
27.8±7.2◦

(13.8-37.7◦)
37.0±3.2◦

(33.5-43.9◦)

3.4.2 Individual Difference

We listed the minimum and maximum gaze ranges of individual
participants in left, right, up and down directions in Table 1. The
result showed a high diversity of gaze ranges of the participants in all
directions. The angle of the participant with the largest gaze range
was 50% larger than the angle of the participant with the smallest
gaze range. This highlighted the necessity of designing personalized
menu range that fits the gaze movement ability of different users.
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4 GAZEDOCK: DESIGN AND IMPLEMENTATION

In this section, we described the design and implementation of
GazeDock, including interaction design, UI design and interaction
algorithms.

4.1 Interaction Design
The interface of GazeDock was a ring-shaped menu located on the
periphery of the user’s FOV (see Fig. 10a). The outer boundary of
GazeDock lied on the edge of FOV, and the inner boundary was
determined according to the user’s eye movement ability, which
would be discussed later. This interface made it less occlusion in
the user’s central vision compared to a traditional pop-up menu
(also saved screen occupation) [59]. Accordingly, menu items were
arranged radially around the menu, in sectors.

GazeDock worked like the docking menu in desktop GUIs, which
was hidden by default, and would be showed when the user’s gaze
approaches it. The user can then select a menu item by moving the
gaze onto it. The selected item would be highlighted to inform the
selection. When the user moves his/her gaze back from the menu,
the last selected item would be triggered, and the menu would hide
automatically. In practice, a “cancel” item can be arranged in the
menu to quit the menu without triggering other commands, in case
of false triggering. To provide a smooth experience of transition, we
designed GazeDock to fade in (decrease transparency) and fade out
(increase transparency) when showing and hiding, respectively.

4.2 Menu Boundary Personalization
A key problem of GazeDock was to determine the inner boundary
of the menu that suits the gaze movement ability of the users. To
explore this, we define menu width as the radial distance between
the inner boundary and the outer boundary (the edge of FOV).

According to Fig. 2, the menu width in the up direction should be
larger than that in left, right and down directions in order to fit the
user’s natural gaze range. Meanwhile, the gaze ranges were highly
diverse across users (see Table 1). Therefore, if the menu width was
too small, some users may not be able to reach the menu region;
however if the width was too large, other users may frequently
encounter false-triggering. Aiming at this problem, we decided to
employ a personalized menu width for individual users.

As showed in Fig. 2, the distribution of users’ gaze was similar
to a flat ellipse. Therefore, we modeled the users’ gaze range using
an ellipse with user-specific parameters. Specifically, we used least-
squares fitting [11] to find an optimal ellipse to fit the boundary of
the user’s gaze range including a certain proportion of gaze points.
And as the gaze was horizontally symmetric, we constrained the
rotation of the ellipse to zero:

(x− cx)
2

w2 +
(y− cy)

2

h2 = 1 (2)

where (cx,cy) denoted the center of the ellipse, w and h denoted the
width and height of the ellipse, respectively. This model requires
only four parameters, therefore is easy to build by measuring the
movement ranges in left, right, up and down directions. We built the
models on the data from Study 1, Fig. 3 showed the fitted ellipses,
and Table 2 showed the average parameters of ellipses of individual
users.

This result confirmed that the X coordinates of fitted ellipse cen-
ters were close to zero (horizontally symmetric), therefore we con-
stantly set cx ≡ 0 for simplicity. Meanwhile, the other three param-
eters should be personalized for different users. According to user
feedback, a “general” ellipse would be too large for some users,
or would cause severe false triggering problems for other users.
Therefore, we designed a calibration process to determine the menu
boundary of GazeDock for each user:

Step 1: We arranged 11 spheres on the top middle and bottom
middle of FOV, with gaze angles of 8◦− 28◦ (up) and 20◦− 45◦

Figure 3: Fitted ellipses on the data in Study 1. (a) Fitted ellipse
(red) and the actual boundary (blue) covering 99.7% of gaze points
from all users. (b) Fitted ellipses for individual users covering 99.7%
of gaze points.

Table 2: The parameters of fitted ellipses of individual participants
covering 99.0%, 99.7% or 99.9% of gaze data.

Center X Center Y Width Height

99.0% -0.68±1.88◦ -6.91±3.69◦ 32.2±4.80◦ 23.7±2.57◦

99.7% -0.42±2.22◦ -7.47±4.18◦ 35.7±5.12◦ 26.0±2.92◦

99.9% -0.10±2.25◦ -8.65±4.06◦ 37.6±4.85◦ 27.6±3.18◦

(down) respectively (Fig. 4a). The user identified the highest/lowest
spheres he/she could gaze at without discomfort or fatigue as the
upper and lower bound, respectively. The identified sphere would
be highlighted in red. h was calculated as the distance between the
upper and lower bounds, and cy was calculated as the midpoint of
the them.

Step 2: Similar with Step 1, 22 spheres were arranged horizontally
symmetrically with gaze angles of 20◦− 45◦ (Fig. 4b). The user
identified the left/right most spheres he/she could gaze at without
discomfort or fatigue as the left and right bound, respectively. w was
calculated as the distance between the left and right bounds.

Figure 4: The calibration process. (a) Determine the upper and
lower bounds. (b) Determine the left and right bounds. (c) The
personalized boundary of GazeDock.

This calibration process generated an ellipse of the user’s per-
ceived “comfortable range” of gaze. According to pilot study, we
further reduced the size (w and h) of the ellipse by multiplying a
scaling factor of 0.9, which ensured comfortable interaction expe-
rience. The visual menu boundary of GazeDock was set according
to the fitted ellipse (Fig. 4c). When using GazeDock, this process
was performed only once for each user after the standard calibration
process of the eye tracker, and took less than one minute.

4.3 Menu Triggering Algorithm
Ideally, we hope GazeDock to fade in when the user’s gaze enters
the menu region. However, Study 1 showed that although this works
in most of the time, there are occasionally gazes that unintentionally
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enters this region, which may cause false triggering. Therefore,
besides gaze point location, we also extracted features from the
moving process to help resolve input ambiguity.

Fig. 5 showed an example of gaze movements with large angles
in natural movement and when invoking GazeDock, respectively.
According to pilot study, intentional gaze pointing consisted of two
phases (Fig. 5b): 1) Gaze angle increased rapidly; 2) Gaze angle
kept for a period of time. In comparison, phase 2 did not exist in
natural gaze movements (e.g. glance), since the user tended to rotate
the head to help keep his/her gaze in the comfort zone.

Figure 5: Examples of (a) natural gaze movement; and (b) inten-
tionally approaching GazeDock. Red dots indicated the three key
frames the algorithm monitored.

We designed the menu triggering algorithm of GazeDock accord-
ing to this observation. Specifically, we used two connected time
windows with size W to detect phase 1 and phase 2 respectively,
yielding three key frames (red dots in Fig. 5): t −2W (before gaze
angle increases), t−W (after gaze angle increases but before plateau)
and t (after plateau). During usage, if the gaze angle at t −2W was
smaller than T H (a threshold), and gaze angles at t −W and t were
both greater than the inner boundary of GazeDock (details in the
above section), we considered this process an intentional invoking
behavior, and GazeDock would be showed automatically. We set
T H = 10◦ and W = 100ms according to pre-testing.

We validated the false-triggering-prevention performance of this
algorithm on the data from Study 1. The personalized menu bound-
ary for each participant was fitted using an ellipse on the 99% bound-
ary. For each user, we took all his/her gaze data series as the input,
and calculated the false triggering rate. In total, GazeDock was
triggered 103 times during 399 minutes of natural gaze movement
in VR applications, equivalent to a false triggering rate of 0.26
times/min. In comparison, a naı̈ve algorithm that detects triggering
action based on only menu boundary yielded a false triggering rate
of 0.72 times/min. We also tried to further improve the algorithm by
tuning parameters and involving more features (e.g., the variance of
polar angles during triggering action), but the improvement was not
significant.

4.4 Selection Confirmation Mechanism

We designed GazeDock to confirm the selection when the user’s
gaze left the menu from a menu item. This required the users to
keep the gaze within the menu when browsing the items (i.e., curved
trajectory). However, as the menu was ring-shaped, it was likely that
the user’s gaze may leave the menu unintentionally when going for
items that were not adjacent.

To address this problem, we also applied an algorithm that shared
the same principle with the menu triggering algorithm. Three key
frames corresponding to another two phases (W = 100ms) were
monitored: 1) Gaze angle decreased rapidly; 2) Gaze kept a small
angle for a period of time. In addition, we set that if the user’s gaze
re-entered the menu within 200ms, the confirmation would not be
triggered. Although resulting in a slight delay, this was very helpful
for resolving unexpected triggers due to gaze jitter at large gaze
angles.

5 STUDY 2: GAZE POINTING PERFORMANCE ON PERIPH-
ERAL MENUS

So far, we have designed the menu layout and selection mechanism
of GazeDock, which minimized the possibility of false triggering. In
this section, we further investigated the users’ gaze pointing ability
within the peripheral menu of GazeDock, with the aim to facilitate
the interaction performance using the optimized menu item layout.
Specifically, we conducted two stages of experiments: 1) examining
the users’ selection precision in different directions; 2) examining
the users’ selection performance on GazeDock with different item
densities.

5.1 Participants and Apparatus
10 participants in Study 1 (7 male, 3 female, aged 20-27) were
recruited for this study. They had VR experience for 1.8 years on
average, ranging from 0 to 4 years. None of them had experience in
gaze-based menu selection. We used the same apparatus as in Study
1 for VR rendering and eye-tracking. The experiment platform was
developed in Unity 2018.1.0b12, gaze data was obtained from the
Unity interface of HTC SRanipal SDK.

5.2 Stage 1: Selecting Precision in Different Directions
In this stage, we asked the participants to gaze at precise directions
on the periphery of FOV, and calculated the polar error. This result
reflects the users’ intrinsic gaze control ability for precise pointing.

5.2.1 Experiment Design and Procedure
Before the experiment, each participant first calibrated the eye
tracker using the default calibration process of HTC Vive Pro Eye.
They then completed the calibration process of GazeDock to gener-
ate their personalized menu boundaries. The experiment consisted
of three sessions with 30 trials in each session. We evenly divided
the polar angle of the FOV into 30 parts. In each trial, the participant
was asked to gaze at an indicator in one part. The presented order of
the indicators was randomized.

Figure 6: Experiment platform in stage 1. We measured the polar
error as the angle between the indicator and the participant’s actual
gaze point (asterisk).

Fig. 6 showed the experiment platform. At the beginning of each
trial, the participants were asked to keep their gaze at the center of
the FOV (indicated by a red cross). They then moved the gaze to
the target indicator (a blue circle with a visual angle less than 2◦)
on the menu’s inner boundary) and kept for 500ms. After that, the
participants were allowed to move the gaze back to the center and go
to the next trial. A one-minute break was enforced between different
sessions.

5.2.2 Results
We collected 10 (participants) × 3 (sessions) × 30 (trials) = 900
trials in total. We removed two obviously wrong trials and used
898 trials for analysis. We averaged the gaze points during the
keeping phase (i.e., the velocity of gaze below a threshold) as the
participant’s actual gaze point in a trial.

We measured the precision of gaze in a trial using polar error,
which was calculated as the polar angle between the participant’s
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actual gaze point and the indicator. A positive polar error indicated
that the actual gaze lied to the left of the target (in polar system), and
vice versa. We also measured the absolute polar error to analyze
the amplitude of polar errors, which corresponded to the absolute
value of polar error.

Fig. 7a showed the distribution of polar error across all targets,
which roughly followed a Gaussian distribution. The mean polar
error was 0.02◦ (SD = 5.42◦). The 90%, 95% and 99% confident
interval of polar error were −7.21◦–7.98◦, -11.3◦–11.4◦, and -22.8◦–
17.5◦, respectively. This result could been seen as the upper bound
of the gaze pointing precision on a peripheral menu, and would
determine the upper bound of the number of items on the menu. For
example, if we assume 18 items on the menu, then each item would
be 20◦ on average. Therefore, about 5% of gaze points would fail
to hit the target correctly. In practice, researchers could also choose
the corresponding number of items given the acceptable error rate
based on the result.

Figure 7: (a) The distribution of polar error. The red curve showed a
fitted Gaussian distribution. (b) Polar error and absolute polar error
in different directions.

We also visualized the average polar error and absolute polar error
in different directions (Fig. 7b). Polar error showed tendencies in
different directions: the participant’s actual gaze tended to yield a
negative deviation when gazing at the upper-left part and a positive
deviation when gazing at the lower-right part. Meanwhile, absolute
polar error was not observably different in different directions. The
average absolute polar error in all directions ranged from 2.84◦ to
5.84◦, while the standard deviations even reached between 3.35◦ and
7.14◦. As the pointing accuracy in real use was mainly affected by
absolute polar error, we concluded that the menu item arrangement
of GazeDock could be uniform across different directions.

5.3 Stage 2: Comparing Different Item Densities
In this stage, we conducted another experiment that required the
participants to select from different numbers of menu items on a
peripheral menu. This not only complemented the above results with
results on interaction speed, but also verified the results by testing
targets with different angle sizes.

5.3.1 Experiment Design and Procedure

In this stage, we implemented the menu triggering and selection
confirming algorithms as described above to provide the real interac-
tion experience of GazeDock. We used a within-subjects experiment
design with only one factor Density (number of menu items). Specif-
ically, according to the results in stage 1, we tested five densities: 4,
6, 8, 12 and 16 menu items (see Fig. 8).

Before the experiment, we employed the same calibration process
for the eye tracker and menu boundaries as in stage 1. After that,
the participants spent 2–3 minutes to familiarize themselves with
the interaction of GazeDock. They then completed five sessions of
selection tasks in random order, each corresponding to one density.

Figure 8: An example of GazeDock with different numbers of menu
items. Letters labelled menu items clockwise, while “A” located
randomly in different sessions.

In each session, the menu showed the letters ‘A’, ‘B’, ... clockwise
on each menu item, with the start position (i.e. ‘A’) randomly chosen
(see Fig. 8). Each session contained 24 trials. In each trial, a random
target letter would appear in the center of FOV, the participant was
required to select the corresponding menu item using GazeDock
as quickly and as accurately as possible. A one-minute break was
enforced between different sessions.

5.3.2 Results
The average selection error rate was 0.8% (SD = 1.7%), 2.9% (SD
= 3.4%), 5.8% (SD = 4.0%), 12.5% (SD = 8.3%) and 20.8% (SD
= 5.9%) for increasing number of menu items respectively. RM-
ANOVA found a significant effect of Density on error rate (F4,36 =
28.8, p < .001). As expected, error rate increased monotonously
with item density. Linear fitting between density and error rate
yielded an R2 of 0.99. For density ≤ 8, the error rate was relatively
low (< 6%), but it dramatically increased to over 12% for 12 items,
and even over 20% for 16 items. Therefore, we considered the
maximum number of items to be 8 in practical use.

Figure 9: The error rate, selection time and throughput for different
densities. Error bar indicated one standard deviation.

Selection time was defined as the elapse between the moment
the user’s gaze starts moving and the confirming of the selection.
The average selection time was 0.64s (SD = 0.11), 0.80s (SD =
0.29), 1.05s (SD = 0.18), 1.46s (SD = 0.28) and 1.69s (SD = 0.37)
for increasing item densities respectively. RM-ANOVA found a
significant effect of Density on selection time (F4,36 = 52.2, p <
.001). Linear fitting between density and selection time yielded an
R2 of 0.98. We speculated that browsing the menu items affected
the selection time more than triggering the menu.

We also measured the throughput [45] to analyze the tradeoff
between speed and accuracy, which was calculated as:

throughput =
Number of items

Selection time
× (1− error rate) (3)

The average throughput was 3.16bps (SD = 0.48), 3.35bps (SD
= 0.69), 2.76bps (SD = 0.49), 2.24bps (SD = 0.54), and 1.95bps
(SD = 0.43) for increasing densities, respectively. RM-ANOVA
found a significant effect of Density on throughput (F4,36 = 31.4,
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p < .001). Post-hoc analysis with Bonferroni correction found no
significant difference between 4, 6 and 8 items. This results implied
that arranging 4–8 items on the peripheral menu would yield the
highest performance.

6 STUDY 3: USABILITY EVALUATION IN REAL TASKS

So far, we have examined the false-triggering-prevension ability of
GazeDock through simulation (see Section 4.3), and user’s menu
item selection performance (see Section 5). We now evaluated the
usability of GazeDock in a VR game scenario. Compared with
tasks only in constrained conditions (e.g., [3, 4]), this also involved
the switch between gaze interaction and other tasks (e.g., natural
gaze movement during scene exploration), which required a balance
between input speed and robustness. Therefore, the results were
more indicative of the usability of gaze-only techniques in real
scenarios.

6.1 Participants and Apparatus
We recruited 8 participants (6 male, 2 female, aged 21-28) from the
campus. None of them have participated in the previous studies. The
same apparatus as in Study 1 and 2 was used in this experiment. The
VR game was developed in Unity 2018.1.0b12.

6.2 Experiment Platform
We developed a gaze-based VR game as the experiment platform (see
Fig. 10). We designed three rooms in the scene: laboratory, magic
house and bedroom, and we placed a number of props that belong
to different rooms (e.g., laboratory: flask, test tubes and tweezers;
magic house: candle, totem and poison; bedroom: football, speaker
and potted plants) in random places. The goal of this game was to
explore the rooms, find the props that do not belong to the current
room, and move them back to their target positions (highlighted by
a halo). The supported interactions in this game were:

• Explore: move the user’s head and body to observe the props
in the current room.

• Navigate: invoke one of the three ‘Move” commands (“Move
to Lab”, “Move to Magic House” or “Move to Bedroom”) to
teleport between different rooms.

• Pick: face a prop and invoke “Pick” command to pick it up.

• Drop: face a potential position of the prop and invoke “Drop”
command to put it there. If the prop matches the position, the
prop will be successfully dropped. Otherwise, the user has to
look for another position to drop.

Figure 10: Experiment platform with different techniques: (a) Gaze-
Dock; (b) Dwelling; (c) Pursuit.

6.3 Techniques
The experiment platform involved both scene exploration (with
natural gaze movement) and command invoking. However, most
gaze-only interaction techniques (e.g. [3]) did not consider how to
“enable” and “disable” themselves, making them incapable of the

compound task. Therefore, we chose Dwelling and Pursuit, the
two most widely-adopted gaze-only interaction paradigms as the
baseline techniques for menu interaction, and used similar designs
as GazeDock for a fair comparison. We arranged 5 menu items
for each technique, corresponding to the 5 commands above. We
also added a 6th command “Cancel” for GazeDock and dwelling, in
case of false triggering. The labels on each item were represented
by a character in the corresponding command. The details of the
techniques were:

GazeDock: We used a 6-item GazeDock with the algorithms and
parameters described in Section 4 (see Fig. 10a).

Dwelling: Dwelling-based techniques use a menu that is always
displayed, and triggers an item when the gaze dwells on the menu
item. As menus in the central of the user’s FOV (e.g. [24, 54])
could not be used in our scenario due to severe occlusion, we used a
translucent peripheral menu referring to previous works [20, 22, 32].
We tested the menu boundary of GazeDock for dwelling, but did
not achieved acceptable performance as dwelling on the edge of
FOV was much more difficult than glancing. Therefore, for each
participant, we expanded the width of the peripheral menu as they
desired (see Fig. 10b). The dwelling threshold was set to 500ms
according to pilot study, which was also a typical value for stable
dwelling performance [33].

Pursuit: Pursuit-based techniques require the users to perform
gaze gestures following the unique trajectories of different objects
or items [10, 55] to select them. We designed five round targets with
different colors and labels for the commands. To avoid occlusion, we
arranged the targets to move along a circle in the periphery of FOV
following Orbits [9] (see Fig. 10c) and used the same parameters
(e.g., window size: 1000ms, moving speed: 120◦/s, correlation
threshold: 0.8) to maintain optimal performance. We also verified
the usability of the parameter values through pilot study.

We did not test gaze gesture techniques as they required careful
designing of the gesture strokes and gesture-command mapping
to achieve good performance while preventing false triggering [5],
which is out of the scope of this paper. Also, menu selection tech-
niques (e.g. GazeDock) can be easily generalized to increasing
number of items (e.g. by using hierarchical menu [24]), which was
usually not the design goal of gaze gesture techniques.

6.4 Procedure
Before the experiment, each participant first completed the calibra-
tion process of the eye tracker and GazeDock respectively. They then
spent 5–10 minutes to familiarize themselves with the interactions
of the experiment platform and the three techniques.

The experiment was consisted of three sessions, each correspond-
ing to one technique, in random order. In each session, the par-
ticipants were required to place six random props to the correct
positions. As the goal of this experiment was to mimic the most
natural and realistic use scenario, we did not restricted the time
or order of the tasks, the participants were allowed to explore and
complete the tasks freely. Accordingly, they were asked to report all
the errors during the experiment for analysis (e.g., false triggering
of a command or failed to trigger a command). The experiment was
finished after the participants have placed all the six props at the
correct positions. And the participants filled out questionnaires to
give their subjective ratings on the different techniques.

6.5 Results
6.5.1 Interaction Performance
As the difficulty of the random tasks varied significantly (some
may took longer time to explore), and the participants were free to
perform different actions, we did not analyze the total time they spent.
Focusing on the interaction performance, we measured the selection
time of GazeDock as in Study 2. The average selection time was
471ms (SD = 142ms), which was faster than Dwelling (≥ 500ms)
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and Pursuit (≥ 1000ms). Note that we allowed the users to complete
the tasks freely. Therefore the results were only indicative of the
relative performance of different techniques.

It is noteworthy that the selection speed of GazeDock in Study 3
was faster than that in Study 2 (see Fig. 9). We observed that as the
menu layout in Study 3 was fixed, the participants could get familiar
with the location of different items quickly with practice, and could
learn to trigger the items with little or no aiming. This suggested that
GazeDock could facilitate a novice-to-expert transition, and achieve
potentially higher interaction speed when used “eyes-freely”.

We also measured the robustness of the different techniques. As
the ground truth of user’s interaction intention was not obtainable,
we calculated the user-report false positive (false triggering of a
command) and false negative (tried to invoke a command but failed)
rate, respectively. These metrics were not affected by the frequency
of the user’s interaction, thus is more suitable for the free interaction
scenario in this study.

The false positive rates of GazeDock, Dwelling and Pursuit were
3.6% (SD = 4.2%), 2.8% (SD = 3.7%) and 4.9% (SD = 4.9%),
respectively. RM-ANOVA found no significant difference between
different techniques (F2,14 = 0.436, p = .65). Meanwhile, the false
negative rates of GazeDock, Dwelling and Pursuit were 1.9% (SD =
2.6%), 2.2% (SD = 2.6%) and 2.4% (SD = 2.2%), respectively. Still,
no significant difference between different techniques was found
(F2,14 = 0.056, p = .95).

Combining the results, we could found that the three techniques
achieved competitive performance when preventing false trigger-
ing and responding to user’s interactions. Therefore, they were
all successful in distinguishing intentional and unintentional gaze
interactions. Meanwhile, GazeDock yielded potentially higher in-
teraction speed than the other two techniques. As the parameters
of all the three techniques have been fine-tuned for our scenario,
we believe these results implied that GazeDock could effectively
balance input speed and robustness, and could achieve satisfying
performance in realistic compound tasks. Of course, in real use,
the performance of all the three techniques can still be adjusted
for specific demands by changing the parameter values. However,
increasing the performance in one aspect (e.g. shorter time threshold
for higher speed) would sacrifice other metrics (e.g., more false
triggering), given the speed-robustness trade-off.

6.5.2 Subjective Feedback

Subjective ratings were a very important metric for our semi-
structured experiment, as we emphasize more on a “realistic user
experience” rather than “optimal performance”. The subjective rat-
ings were gathered through a 7-point Likert-scale questionnaire.
Dimensions include perceived efficiency (“Are you satisfied with
the selection speed of this technique?”), perceived robustness (“Are
you satisfied with the false triggering prevention ability of this tech-
nique?”), ease of learning (“Do you agree that this technique is
easy to learn?”), effortless (“Do you feel tired when using this
technique?”), presentation (“Are you satisfied with the appearance
and behavior of the UI of this technique?”) and overall preference.
Fig. 11 showed the subjective ratings of the techniques.

Figure 11: Subjective ratings of different techniques (7: most posi-
tive, 1: most negative). Error bars indicate one standard deviation.

GazeDock received a significantly higher rating than the other two
techniques on all dimensions except for perceived robustness ( Effi-
ciency: χ2(2) = 15.0, p < .001, Learning: χ2(2) = 13.2, p < .001,
Effortless: χ2(2) = 6.50, p < .05, Presentation: χ2(2) = 13.3,
p < .001 and Overall: χ2(2) = 8.87, p < .05. And although the
Robustness score of GazeDock was lower than that of Dwelling, no
significant difference was found (χ2(2) = 4.22, p = .121), and the
score of all techniques were above 4.3, indicating that the partici-
pants were positive towards all the techniques. We did not formally
evaluate the metrics that would also be affected by the scene design
(e.g., ocular discomfort and cybersickness), but during interview, the
participants were generally satisfied with the user experience, and
did not report significant discomfort.

7 DISCUSSION

7.1 Feasibility of GazeDock
GazeDock enables fast and robust gaze-only menu input. The design
goal of GazeDock was to leverage gaze movement patterns that
distinguished from natural gaze movements to prevent false trigger-
ing. However, the demand for interaction speed makes it difficult
to design such “abnormal” gaze patterns (e.g., long and complex
gaze gestures were not acceptable). Therefore, in Study 1, we first
collected the user’s natural gaze movement data in typical kinds of
VR applications, and analyzed the movement patterns. We found
that gaze points mainly distributed in the central area of FOV, and
rarely reached the peripheral zone.

Based on the above findings, we proposed the peripheral menu
design of GazeDock. Compared with conventional rectangle menus,
this not only reduced the conflict with natural gaze movement, but
also introduced an advantage of less screen occupation. We also
designed menu triggering and selection confirming algorithms that
considered both gaze location and gaze movement speed to further
prevent false triggering from glancing. Simulation results showed
a false triggering rate of only 0.26 times/min during natural gaze
movement. The design of peripheral menu not only provided op-
portunities for preventing false triggering, but also improved the
input speed by omitting explicit menu triggering and confirming ac-
tions. This was only achievable as GazeDock was able to distinguish
between intentional and unintentional gaze movements.

To further verify the input speed and usability of GazeDock, we
conducted Study 2 and Study 3 in controlled and free conditions,
respectively. Results showed that GazeDock could achieve a selec-
tion speed of 1.05s with 5.8% error rate for 8 items. This suggested
that although in the peripheral zone of FOV, the users could still
accurately point at targets on the menu. And in compound tasks,
GazeDock were more preferred by the participants compared with
Dwelling and Pursuit. These results proved that GazeDock could
effectively support menu selection without disturbing natural gaze
movements, and could achieve satisfying performance and user ex-
perience in real use scenarios.

7.2 GazeDock vs. Gaze Gesture Techniques
GazeDock was designed as a menu technique. However, in Study 3,
we observed that participants could enter an “expert mode” when
they get familiar with the menu layout: the users could memorize the
direction of the target item, and can perform the selection without
adjusting within the menu, similar as a “gaze crossing gesture”.
There are two intrinsic difference between GazeDock and other gaze
gesture techniques:

First, menu layout was a necessary component of any menu tech-
niques including GazeDock, as memorizing all the menu items was
not easy. However, typical gaze gesture techniques (e.g., [5]) do
not involve visible guides as they feature eyes-free usage. Accord-
ingly, GazeDock were more flexible when handling arbitrary number
of items (e.g., by appending items on an “dynamic inner menu”,
GazeDock could support hierarchical menus). In comparison, gaze
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gesture techniques were more specific to a fixed number of gesture
set with specially designed gesture-command mappings.

Second, gaze gesture techniques require the users to perform the
correct gesture to trigger the corresponding commands. In com-
parison, GazeDock always triggers the last selected item before
confirmation. Therefore, GazeDock does not require a 1:1 mapping
between the gaze trajectory and the target item, as users could ad-
just the selected item within the menu before confirmation, which
compensated the imprecision in the initial gaze movement.

GazeDock has an intrinsic advantage over saccades: novice users
could use GazeDock with the help of the visual menu layout, thus
minimizing the memorization and learning effort, achieving a sat-
isfying pick-up speed (< 1.5s for 12 items as in Fig. 9). And with
practice, experienced users could estimate the direction of the target
item and perform a “forth-back” gesture for selection, therefore
achieving much higher interaction performance (471ms in Study 3)
without adjusting the algorithms. Also, with the help of the visual
guidance, selecting items with GazeDock would be more accurate
than simply glancing at different directions eyes-freely. Although we
only tested 6 items in Study 3 to evaluate the usability of GazeDock,
the results in Study 2 suggested that supporting more items was
also achievable. And in real use, both the pick-up usability and the
generalizability of a technique were very important. Therefore, the
visual menu played a necessary part in the usability of GazeDock.

7.3 Personalization
As we showed in Study 1, the size and location of the comfort zone
of different users varied significantly (see Table 1), which high-
lighted the necessity of personalization for GazeDock. In this paper,
we designed a calibration process to measure the comfort zone of
different users, which was effective, but at the cost of more prepa-
ration time. Further improvements of personalization include: 1)
combining the calibration process of GazeDock with the calibration
process of the eye tracker by containing the peripheral of FOV in
the moving trajectory of the argets [43]; 2) introducing a dynamic al-
gorithm for GazeDock that starts with a default menu boundary, and
dynamically adjusts the boundary according to the user’s gaze move-
ment patterns. These solutions were expected to further improve the
user experience of GazeDock, but the interaction performance we
examined in this paper would not be affected. Therefore, we defer
them to future work.

8 CONCLUSION

In this paper, we proposed GazeDock, a fast and robust gaze-only
menu technique in VR that leveraged auto-triggering peripheral
menu. We iteratively conducted three user studies to facilitate the
design and evaluation of GazeDock. Study 1 examined the user’s
natural gaze movement pattern in typical VR applications, which
verified the peripheral menu design of GazeDock. Study 2 examined
user’s menu selection performance with GazeDock, and found that
4–8 items would yield optimal performance. Study 3 evaluated the
usability of GazeDock in compound tasks, and found that GazeDock
were more preferred by the participants compared with Dwelling
and Pursuit techniques. We concluded that GazeDock could effec-
tively support gaze-only menu selection in VR while preventing
false triggering, making it a potential solution for real-world VR
applications.
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