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ABSTRACT
Background: In CS1 courses, Parsons problems are a popular ac-
tivity in which students are given blocks of code and asked to rear-
range them into the correct order. Parsons problems often include
incorrect blocks of code referred to as distractor blocks. Despite
their widespread use, there have been few investigations into how
distractor blocks impact student learning.
Objectives: Our goals are to understand (1) the impact that includ-
ing distractor blocks in Parsons problems has on learning and (2)
the causality underlying that learning, if any.
Methods: In this paper, we present the results of an explanatory se-
quential mixed methods study investigating the impact of distractor
blocks on student learning. For the initial, quantitative stage, we use
a randomized control trial to quantify the learning outcomes from
practice with Parsons problems that include distractor blocks, as
measured via post-test taken immediately after the practice activity
and a retention test taken a week later. This study is followed by
think-aloud interviews with 10 students practicing using a mix of
Parsons problems that do and do not contain distractors to under-
stand differences in how students approach those problems.
Findings:Our findings show that students who practiced using Par-
sons problems that contained distractors performed 11 percentage
points better on the immediate post-test (statistically significant)
and 10 percentage points better on the retention test (approaching
significance). The results of the think-aloud interviews indicate that
grouping distractors with blocks of correct code causes students to
more closely attend to the details of the code within those blocks.
Implications: The results of this study indicate that distractors are
essential when Parsons problems are used in a formative context.
When they are not included, students may be able to successfully
place blocks of code without attending to details of the code. This in
turn limits their ability to learn new concepts or reinforce existing
knowledge from those code blocks.
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1 INTRODUCTION
Programming is a complex task that requires proficiency in a variety
of skills. This includes: 1) the mastery of a language’s basic syntax
and semantics [2, 53], 2) the ability to read, write, and comprehend
code [27, 52, 87], 3) higher-level skills such as writing high-quality
code, and 4) debugging [8, 14, 58]. Given the diversity and com-
plexity of these skills, many educators have developed tools and
pedagogical approaches to ease their learning curve.

Among these, Parsons problems were first introduced by Parsons
and Haden [59] as “Parsons Programming Puzzles.” Their intention
was to scaffold the process of learning to write code by providing
students with a set of blocks of code that they must rearrange to
solve a given task. Parsons problems have since garnered significant
interest from educators and researchers alike due to their educa-
tional affordances [16, 20]. Parsons problems have been shown to
improve learning efficiency [21, 35], reduce cognitive load [3, 25, 56],
and improve student engagement with study materials [22, 55, 59].

Since their introduction, Parsons problems have included incor-
rect blocks of code referred to as “distractors” or “distractor blocks”.
The purpose of including these blocks is to highlight and correct
common errors in formative settings [59] and increase problem
difficulty in summative contexts [15, 72, 74, 86]. However, the body
of work investigating the role and impact of distractors on learning
is small and somewhat inconsistent in its findings. Harms et al. [34]
found that students practicing with Parsons problems that included
distractors took longer in completing practice activities but did
not show improved performance compared to students practicing
with problems that did not include distractors. A recent ITiCSE
working group found that students who practiced with Parsons
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problems that included distractors performed better on code fixing
questions and made fewer errors when completing code writing
questions [24]. Similarly, Poulsen et al. [60] studied a related ex-
ercise “Proof Blocks” where students arrange blocks to form an
inductive proof and found that, although students practicing with
distractors performed better on a post-test, the difference was not
statistically significant.

Given the mixed results of prior work, we perform a concep-
tual replication [33] of the studies conducted by Ericson et al. [24]
and Poulsen et al. [60]. In doing so, we use an explanatory mixed-
methods approach [12]. This begins with a randomized control trial
aimed at comparing the learning gains of students practicing under
one of two conditions: Parsons problems containing distractors
(intervention) to those that do not (control). The research questions
this approach addresses are as follows:
RQ1: What are the learning differences between students practic-

ing under each condition in an immediate post test?
RQ2: What are the learning differences between students practic-

ing under each condition in a retention test taken a week
later?

To offer deeper insight into the results of RQ1 and RQ2, we de-
signed a subsequent qualitative study using think-aloud methods
where we observed students practicing a new topic using a mix of
Parsons problems that did and did not contain distractor blocks.
Our goal is to understand differences in how students interact with
Parsons problems that contain distractor blocks versus those that
did not. This was done to address the final two research questions:
RQ3: How do students’ problem solving procedures differ when

solving Parsons problems that include distractors versus
those that do not?

RQ4: What are students’ perceptions of practicing with Parsons
problems that include distractor blocks versus those that do
not?

Using both lenses, we hope to provide a fuller picture of the im-
pact of distractors on learning in addition to shedding light on the
underlying reasons for those results.

2 RELATEDWORK
We organize our related work into three areas. First, in Section 2.1
we cover the origins of Parsons problems, developments made
since their introduction, and their adoption into classrooms. Next,
in Section 2.2, we cover literature relating to the design and utility
of distractors drawing on investigations into the effectiveness of
multiple-choice questions and Parsons problems. We conclude in
Section 2.3 by covering learning theory relevant to Parsons prob-
lems and the use of distractors.

2.1 Parsons Problems - Designs and Affordances
Parsons problems began as a mechanism for providing students
with a drilling exercise that improved engagement and could pro-
vide immediate feedback [59]. The design goals of this question
type were to:

(1) Maximize engagement through a more puzzle like inter-
face which Parsons and Haden theorized would be more fun
than traditional CS exercises.

(2) Constrain logic by only allowing students to solve the
problem with the provided code.

(3) Permit common errors through the inclusion of “distractor
blocks” containing errors.

(4) Model good code by letting them interactively construct
an instructor’s solution.

(5) Provide immediate feedback indicating which blocks are
not in the correct order.

Parsons problems have since become a popular tool in teaching
introductory computer science, gaining a large and steadily increas-
ing body of work investigating and informing their use [16, 20]. A
recent 2022 ITiCSE working group by Ericson et al. [20] found that
these investigations have included: 1) identifying the learning gains
Parsons problems provide, 2) improving students’ engagement and
motivation, 3) scaffolding students’ ability to learn how to write
code, and 4) investigating students’ perceptions of the problem type.
Ericson et al. [20] also identified a variety of gaps in the existing
literature, among them the need to understand the role and impact
of distractor blocks in Parsons problems.

Many variants of Parsons problems have emerged to improve
the original problem type and to address other learning goals. Ihan-
tola and Karavirta [39] introduced 2D-Parsons problems, which
require students not only to order the blocks vertically but also
place blocks at the correct levels of indentation. Adaptive Parsons
problems extend the scaffolding ability of the original problem
by merging correct blocks and removing distractor blocks interac-
tively through the use of a hint button [18, 19, 21]. Students are
permitted by the system to use the hint feature after encounter-
ing several errors in an attempt to match the problem’s difficulty
to the student’s ability. Faded Parsons problems present students
with fill-in-the-blank code blocks that they must both complete
and place in the correct order [28, 80, 81]. Micro Parsons problems,
sometimes called “horizontal Parsons problems,” present students
with segments of a single line of code and require them to arrange
the blocks horizontally [84, 85]. The problem format at the core of
Parsons problems have also been extended to the domain of math
education with “Proof Blocks,” where students arrange elements of
a proof rather than code [60–64].

Among the reasons for the popularity of Parsons problems,
and their variants, is their effectiveness with respect to students’
learning. Ericson et al. [23] found that students practicing two-
dimensional, non-adaptive Parsons problems completed their prac-
tice problems more quickly than those students practicing code-
writing problems. They also found that the two groups performed
similarly on a post-test. Poulsen et al. found similar results in the
context of Proof Blocks, though measuring students proof writ-
ing knowledge proved more difficult [60–62]. Ericson et al. [21]
completed a follow-up study that included a comparison between
adaptive and non-adaptive Parsons problems. They found that the
groups practicing with each implementation did not differ in terms
of learning gains or problem-solving efficiency.

2.2 Distractors in Parsons Problems versus
Multiple-Choice Questions

The term “distractor,” as it pertains to its use in Parsons problems,
originates in the domain of multiple-choice questions. There, their
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core role is to obfuscate the correct response by presenting it along-
side plausible but incorrect alternatives (i.e., the distractors). In a
summative context, this is important as the quality of distractors is
one of the main contributors to question quality [29]. If distractors
are poor, then the correct response will be immediately obvious
which, in turn, limits the ability of that item to provide information
on the knowledge of that respondent [77]. By extension, this can
also limit the learning potential of the item. If students are not
forced to engage with plausible alternatives, this limits the retrieval
and encoding of information related to the problem to which they
are responding [5, 51].

Compared to the large body of work that exists with respect
to multiple-choice questions to inform the creation of distrac-
tors [9, 31], the number of distractors to include [10, 65, 78], and the
evaluation of distractors [30, 77], there is a relative dearth inform-
ing their use in Parsons problems. In summative contexts, Denny
et al. [15] showed that the use of distractor blocks that are jumbled
in amongst the response options (jumbled distractors) appear to pro-
duce extraneous cognitive load compared to those that are paired
with their correct alternatives (visually-paired/grouped). A series of
papers by Smith IV et al. showed that including distractors did not
lead to improved item quality and greatly increased the amount of
time students spent on the problem [72–75]. In formative contexts,
Harms et al. [34] showed that students who practiced using Par-
sons problems that included distractor blocks took more time to
solve the problems and did not lead to learning gains compared to
practice that did not include distractor blocks. Conversely, Ericson
et al. [24] showed that students who practiced a new concept with
Parsons problems performed better on problems where they were
required to fix a segment of code that contained errors. They also
showed that students made fewer syntax errors when completing
code writing problems. Haynes-Magyar [36] found that learners
with attention-deficit/hyperactivity disorder (ADHD) had positive
perceptions of visually-paired distractors, feeling that the presence
of the groups of blocks helped focus their attention when solving
said problems in an informal learning context. Poulsen et al. [60]
showed a small but not statistically significant improvement in
learning gains for students who used Proof Blocks problems with
distractor blocks over those who used problems without distractor
blocks.

2.3 Theory Informing the use of Parsons
Problems and Distractor Blocks

Research on Parsons problems has been tightly coupled with theo-
ries of learning and memory. In this section we cover a variety of
those theories including: 1) Cognitive Load theory (Section 2.3.1),
2) Selective Attention (Section 2.3.2), 3) Desirable Difficulties (Sec-
tion 2.3.3), the relationship between learning from errors and feed-
back (Section 2.3.4), and 4) Vygotsky’s Zone of Proximal Devel-
opment (Section 2.3.5). In particular, we relate the implications of
these theories and their findings to the inclusion of distractor blocks
in Parsons problems as well as the design of Parsons problems more
generally.

2.3.1 Cognitive Load Theory. Cognitive load theory (CLT) was first
introduced by Sweller [76] with the following goal:

“... to suggest that contrary to current practice and
many cognitive theories, some forms of problem solv-
ing interfere with learning.”

To help distinguish between the “forms of problem solving” and its
relevance to learning, cognitive load is often categorized as being:
1) intrinsic which is related to the task itself, 2) extraneous which is
related to processing task-irrelevant information, and 3) germane
which is cognitive load dedicated to the act of learning itself [47].
To mitigate extraneous and intrinsic cognitive load, many suggest
the use of guided instruction (e.g., step-by-step walkthroughs) to
minimize the high cognitive load associated with the alternative of
learning through self-guided inquiry and discovery [45, 46].

CLT has been applied to understand the impact of including
distractor blocks in Parsons problems. Denny et al. [15] compared
students solving problems which included jumbled distractors to
problems which included visually-paired distractors. They found
that jumbled distractors lead to extranous cognitive load since the
task of sorting through the blocks itself was an extraneous measure
which had no apparent learning benefits. Similarly, Harms et al.
[34] found that the inclusion of a partial suboptimal path (that is,
distractors that lead students down a suboptimal solution path)
increased cognitive load relative to problems that did not contain
distractors, with no benefit to student learning. These studies iden-
tified a method of including distractors and a type of distractor that
may be at odds with and lead to less efficient learning, respectively.

2.3.2 Selective Attention. The issue of “selective attention,” raised
by Sweller [76], is another issue related to CLT. It refers to the situ-
ation where problem solving approaches and schema acquisition
are entirely disjoint tasks, in which students can successfully apply
a problem solving procedure without engaging in schema acqui-
sition. Through the use of eyetracking, Rehder and Hoffman [66]
investigated how learners focus visual attention when learning to
categorize entities. Their results show that individuals early on in
the category learning process pay attention to all attributes of the
entity. As those learners progress, they are able to identify dimen-
sions on which to focus their attention, in order to more efficiently
categorize.

Though selective attention has yet to be studied in the context of
Parsons problems, it does raise important questions with respect to
designing problems that accomplish their given learning objectives.
If students can solve Parsons problems without attending to the
elements relevant to their learning objectives, that, in turn, limits
their ability to meet those objectives. More research is needed to
understand the processes by which students solve Parsons prob-
lems and how this evolves as students acquire experience both
in programming and solving Parsons problems. In particular, this
motivates our work to understand how the inclusion of distrac-
tor blocks in Parsons problems impacts students’ problem solving
processes and attention when solving problems that include them.

2.3.3 Desirable Difficulties. The term “desirable difficulty” was
first introduced by Bjork [6] in the context of how difficulties that
align with a given learning objective can enhance learning. In this
context, desirability is defined by a given difficulty’s contribution to
a student’s encoding and recall process, as well as its contribution
to long-term learning [7]. The desirability of a given difficulty is
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not fixed in any way and can vary depending on a student’s ability
to understand and respond to the difficulty [4]. Related to CLT,
the desirability of a difficulty is therefore defined by how well it is
aligned with a given learning objective and the degree to which it
contributes to the learning of that objective.

In Parsons problems, distractor blocks are often cited as a fea-
ture used to present students with desirable difficulties [21, 23]. In
this context, the difficulties associated with Parsons problems (e.g.,
indentation, placing blocks in the correct order) are considered
desirable, as they have been shown to contribute to students ability
to write code independent of Parsons problems. Distractors add
an additional dimension of difficulty that prior work has indicated
may facilitate students’ ability to recognize and fix errors [24].

2.3.4 Learning from Errors and Feedback. The term “error” often
has a strong negative connotation, particularly in the context of
learning. This may lead some to be concerned that allowing stu-
dents, in particular novices, to make errors may lead to confusion,
frustration, or potentially reinforce misconceptions [54, 67, 88].
Despite these concerns and intuitions, many studies suggest that
the presence of errors can aid learning [48, 49, 68]. In particular,
permitting and correcting errors related to misconceptions can
help individuals remediate those misconceptions through a process
known as cognitive conflict [41, 57]. Similarly, allowing students
to engage in a process known as productive failure, during which
students first make (typically) unsuccessful attempts to complete
a new task independently in a “problem solving” first teaching
approach, has been shown to lead to improved learning during
subsequent instruction they receive [42–44]. Central to all of these
ideas is the key point that allowing for students to make errors both
allows for those errors to be corrected and makes any subsequent
learning potentially more potent by contextualizing an error which
a student may have previously encountered.

Central to the learning benefits of encountering errors is the
ability for students to see how to correct those errors, particularly
through feedback. This raises the obvious questions of when and
how to deliver that feedback. A meta-analysis by Kulik and Kulik
[50] found that the results of lab studies on the topic often suggest
delayed feedback, whereas classroom studies often suggest imme-
diate feedback. They suggest that the differential findings about
learning is more likely due to themechanisms bywhich students are
incentivized to engage with the feedback rather than when the feed-
back happens to take place. They note that in classroom contexts,
students are likely more incentivized to engage with immediate
feedback as it can help them get closer to a correct solution.

With respect to how the feedback should be given, there is a
general consensus that dichotomized (right or wrong) feedback is in-
effective and that students should, at minimum, receive a correct an-
swer that they can compare their unsuccessful attempt against [54].
A meta-analysis by Bangert-Drowns et al. [1] found that students
who received some higher level form of feedback (e.g., correct an-
swer, repeat until correct, explanation) had higher effect sizes with
respect to learning than studies that included only right/wrong
feedback. Finn and Metcalfe [26] found that feedback that con-
tained hints lead to learning gains on both a post and retention
test. Similarly, Hao et al. [32] found that students who were given
dicotomized feedback were less efficient in arriving at a correct

solution and showed signs of engaging in trial-and-error problem
solving. These studies highlight the importance of feedback design
in learning activities that allow students to commit errors and the
importance of requiring them to independently remediate those
errors.

The design principles of Parsons problems closely align with
the best practices that can be derived from work on errors and
feedback. Parsons problems often use immediate feedback which,
as suggested by Metcalfe [54], may be preferred in instructional
settings. Similarly, they permit and provide feedback on errors
related to incorrect ordering and indentation. By adding distractors,
the problem includes an additional dimension by which an error
might occur. However, to date, there has been limited research
investigating the impact of these errors and the feedback associated
with them on learning.

2.3.5 Zone of Proximal Development and Scaffolding. What has
come to be known as the Zone of Proximal Development (ZPD) was
first introduced by Vygotsky and Cole [79] under the following
definition,

“It is the distance between the actual development
level as determined by independent problem solving
and the level of potential development as deter-
mined through problem solving under adult guidance
or in collaboration with more capable peers.” (p. 86)

This zone is defined as coming beyond the Zone of Actual Devel-
opment (ZAD), where an individual has already developed a given
skill or set of skills and therefore does not require assistance in
successfully exercising that skill set. The ZPD model of learning
sits at the heart of scaffolding. Though the use of the scaffolding
metaphor has a long and complex history [71] a commonly cited
early definition was provided by Wood et al. [83].

“. . . that enables a child or novice to solve a task or
achieve a goal that would be beyond his unassisted
efforts” (p. 90)

Contrasting this definition with the one for ZPD, its similarity
to Vygotskian concepts of learning are clear. Scaffolding seeks
to support students who are capable of completing a task with
assistance (i.e., in their ZPD) with the goal of helping them acquire
the skills needed to complete the task independently (i.e., in their
ZAD) [70].

Although ZPD and scaffolding were not explicitly mentioned
by Parsons and Haden [59] when they introduced the Parsons
problems, one of the stated goals of their design was to “constrain
the logic” of a program’s solution as a method of easing the dif-
ficulty of students arriving at a correct solution. ZPD has been
used more explicitly in the design of adaptive Parsons problems,
which aim to match the problem’s difficulty with the students’ abil-
ity by removing distractors, correcting indentation, or merging
blocks [17, 21, 38].

The use and utility of distractors in Parsons problems can be
viewed through the lenses of ZPD and scaffolding. Parsons and
Haden [59] stated that the intention of including distractors is
to “permit common errors.” Students who select distractors are
required to engage in a form of debugging where they would ideally
compare the block they select to the alternative(s) and identify 1)
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the differences and 2) why their initial selection was incorrect.
Similar to “constrain the logic,” this design decision allows students
to make mistakes and engage in debugging processes in a scaffolded
environment that reduces the chances of them getting stuck.

3 METHODOLOGY
This study employs an explanatory sequential mixed-methods de-
sign to investigate both the magnitude and the source of impact of
practice with distractors on students’ learning [12]. We first ran a
randomized control trial to measure the impact of distractors on
student learning, and then followed that up with interviews to gain
a greater understanding of why the distractors had the effect that
they did. Section 3.1 provides details on the participants, course
from which they were recruited, and how that relates to the design
of the activities students completed. Section 3.2 describes the design
of the Parsons problems used in both the quantitative and quali-
tative portions of this study. Section 3.3 describes the randomized
control trial used to compare learning gains between students who
practiced a new concept using Parsons problems which contained
distractors and students practicing without distractors. Section 3.4
describes the qualitative study which used think-aloud interviews
to gain insight into the underlying attributes of including distrac-
tors in Parsons problems that may have contributed to the observed
learning gains. The results of the qualitative studies are also used to
shed light on students’ perceptions on the presence of distractors
and further inform their design and use.

3.1 Participants and Activity Designs
Participation in the study was solicited in a large introductory
programming course, taught in Python, at the University of Illi-
nois Urbana-Champaign. The Parsons problems used in both the
quantitative and qualitative studies were designed with the goal of
introducing students to a new concept and providing them with
practice integrating that concept into problems that align with the
concepts they had covered thus far in the course. In the case of the
quantitative randomized control trial, we introduce the use of sort-
ing functions in Python. For the qualitative think-aloud interviews,
we introduce the use of iterating through both the key and values
within a dictionary through the use of the dict.items() function.
Each of these studies were approved by the ethics reviews board at
the institution where the studies occured.

3.2 Selection and Design of Distractor Blocks
In the case of problems that contained distractor blocks, only those
blocks containing a call to topic being introduced were associated
with distractors. The intention of this was to reduce cognitive load
by only including distractors that were aligned with the learning
objective. To further reduce extraneous cognitive load, we use visu-
ally grouped distractors as suggested by Denny et al. [15] (Figure 1).
To select our distractors, we used the static analysis suggested by
Smith IV and Zilles [75] to analyze common errors when using sort-
ing functions on code writing activities in the course from which
students were sampled. We select the top errors for each function
(Table 1) and design distractors based on them.

Figure 1: The Parsons problems interface used in this study.
This is an example of a questions which includes visually
grouped distractors.

Table 1: Common errors in code writing questions for sorting
functions.

Correct Statement Errors
list.sort() sort(list)

sorted(list)
list.sorted()
list.sort

new_list = sorted(list) new_list = list.sort()
new_list = sort(list)
new_list = list.sorted()
list.sorted()

for k, v in dict.items(): for k, v in dict.items:
for k, v in dict:
for v, k in dict.items():

For general feedback, we use a version of the line-based feedback
used by Helminen et al. [37]. However, whereas their system high-
lights all blocks that are incorrectly placed or lack indentation, our
system uses a top-down approach whereby blocks are highlighted
as correct until an incorrectly placed block is encountered in the
solution. Once such a block is encountered, it is marked with a red
cross indicating that block is incorrect (Figure 2a). All subsequent
blocks do not receive feedback.

As noted by Parsons and Haden [59], the original intention of
including distractors in Parsons problems was to further scaffold
the debugging experience for students. In reference to the benefits
of a drag-and-drop interface, Parsons and Haden [59] notes,

“Thus we can narrow a very large space of possible errors
to only those that can be used to illustrate a particular
point”

To further this proposed benefit, we designed our distractors to
include feedback which is provided to students in the event a dis-
tractor is selected (an example is shown in Figure 2b). The intention
of this is to draw students attention to the fact they have selected a
distractor and to elucidate the nature of the error in question.
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(a) The general feedback provided to students when their first error
does not include a distractor.

(b) The “distractor feedback” presented to students when the first
errors in their solution contains a distractor.

Figure 2: The two modes of feedback presented to students in the event of an incorrect submission. Responses are graded top
to bottom with the first incorrect block being marked with a red cross. If this block is meant to be included in the correct
solution no other feedback is given (Figure 2a). If it is a distractor, students receive a description of why that block is incorrect
(Figure 2b).

3.3 Quantitative Study Design
We perform a randomized control trial to evaluate the effectiveness
of distractors in teaching students how to fix and write code. The
topic selected for this study was one participants had yet to cover in
class, in this case using the built-in sorting functions in Python. The
study was constructed in two parts each of which was conducted
in a proctored testing environment. During the part one, students
were asked to complete the following sections in an hour and fifty
minute period:

• Introduction and Pre-survey: A short section introducing
students to the structure of the study and asking them to
complete a short survey on their familiarity with the topic.

• Lesson and Practice: A short reading on the topic followed
by a series of 14 Parsons problems to solve.

• Post-test: A test consisting of a variety of questions aimed
at assessing students ability to write code, fix buggy code,
as well as identify and explain errors in existing code on the
topic just practiced.

As for part two, a week later, students were asked to complete a
retention test consisting of the same question types as the post-test.
Participation in either part of the study was voluntary and students
were compensated for their time in the form of 0.5% extra credit
added to their final grade for each part of the study they completed.
The structure of each of these sections is described in more detail
below.

3.3.1 Introduction and Pre-survey. The study begins with a short in-
troduction to the study and a pre-survey. The introduction provided
students with an overview of the study’s components, the Parsons
problems interface, and an informed consent document. From there,
students were given a pre-survey to gauge their familiarity with the
topic they would be practicing and ultimately be tested on, sorting
lists in Python. Given students have not previously been exposed
to the topic, a pre-test would likely suffer from a significant floor
effect. Therefore, we use a study design that does not use a pre-test
and instead use a series of questions on familiarity with the topic to
gauge prior knowledge on the topic. This approach is similar to that
used by Ericson et al. [24] and Poulsen et al. [60] who conducted
similar studies. This survey showed students a code snippet that

contained an example of a function covered in the lesson and asked
them the following series of 5-point Likert scale questions. The
following pair of questions were asked with respect to both the
list.sort() and sorted() functions.

(1) How would you rate your experience, if any, with using the
function in Python?

(2) How would you rate your experience, if any, with reading
code that includes the function in Python?

3.3.2 Lesson and Practice. Students in both conditions began with
a short reading on the topic of using both the list.sort() and
sorted() functions in Python. This lesson showed a variety of
examples of each usage and focused on highlighting the differ-
ence between the in-place nature of list.sort() and the fact that
sorted() returns a new list leaving the original list unaltered.

Following the reading, students are then randomly assigned
to either the no distractors (control) or distractors (intervention)
groups. Students in the distractors group were given distractors
for blocks of code that contained either list.sort() or sorted().
Practice in both conditions consisted of a series of fourteen Parsons
problems, seven of which used list.sort() and seven of which
used sorted(). These questions were designed to guide students
from simple use cases (solutions with 2 blocks of code) to their use
in more complex functions (solutions with upwards of 7 blocks of
code).

3.3.3 Post-test and Retention Test. Students were given a post-test
immediately following the practice section and a retention test
a week later. Each of these tests consisted of the following four
question types: explain error, statement, fix code, and write code
(Table 2). The statement, fix, and write code questions were au-
tograded using a series of unit tests. For each incorrect attempt,
students were given the standard Python unittest output for each
failed test case. Additionally, each incorrect attempt reduced stu-
dents score by a percentage proportional to the number of attempts
they had made with some intermediary partial credit given for
passing some but not all test cases.

The explain error questions were graded by two graders who
were blind to the condition of the student responding. The questions
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Table 2: The question types used in the post test and retention test and their respective grading schemes.

Question Name Description Attempts Incorrect Attempt Penalty

Explain Error Students are given a static block of code and asked to:
1) identify if a bug exists and, if a bug exists, 2) explain
the bug or how to correct it.

(manually
graded)

NA

Fix Error Students are given a block of buggy code and asked to
correct it until it successfully passes a battery of unit
tests.

5 -20%

Statement Question Students are asked to construct an individual line of
code.

4 -25%

Write Code Students are given a problem statement and asked to
write a function that solves the problem.

7 -14.25%

were graded in a binary manner with students receiving full credit
if they identified if an error exists and the source of that error.
The graders independently graded 70 responses and met to resolve
any discrepancies. Following that meeting, the graders coded the
remaining responses independently. The inter-rater reliability was
calculated using Cohen’s Kappa [11] and was found to be 0.93
indicating a very high level of agreement between the two graders.
The graders then met to resolve any disagreements that occurred
in the final set of responses to assign final scores.

3.4 Qualitative Study Design
To evaluate students’ problem solving approaches and perceptions
of questions that include distractors, we designed another learn-
ing activity similar to that used for the randomized control trial.
Here, students were asked to complete a short reading about the
dict.items() function. Specifically it’s usage in for loops (i.e., for
k, v in dict.items()). They then completed fourteen Parsons
problems as a practice activity with seven containing distractors
and the other seven not. These problems were interleaved so stu-
dents alternated between the two throughout the practice activity.
Students were asked to think-aloud while solving the Parsons prob-
lems and, upon completing the exercises, were asked the following
reflection questions:

(1) What are your general thoughts in comparing the questions
that did and did not include distractors?

(2) How would you compare the two types of Parsons problems
in terms of difficulty?

(3) How would you compare the two types of Parsons problems
in terms of their value for learning? For instance, which
would you prefer to practice with when encountering a new
concept and why?

(4) What are your thoughts on the feedback you encountered
when you selected a distractor?

Once these interviews were completed, they were then automati-
cally transcribed, manually reviewed, and corrected. Students were
recruited from the same introductory programming course as the
quantitative study and participation was entirely voluntary. The
interviews lasted approximately one hour and students were com-
pensated fifteen dollars in the form of an Amazon gift card.

4 QUANTITATIVE STUDY - ANALYSIS AND
RESULTS

In total, 88 participants completed the first phase of the study with
46 from the distractors group and 42 from the no distractors group.
A total of 74 students returned for the retention test the following
week with 40 from the distractors group and 34 from the no dis-
tractors group. To ensure the equivalence of these two groups we
compare them in terms of: 1) their self-reported familiarity with the
sorting functions and 2) their scores on an exam taken recently in
the course. To ensure that students had sufficient time to complete
all parts of each study, we look at the time spent on each part by
students in each practice condition.

Familiarity Comparison: Responses to the familiarity survey
questions asked for each of the sorting functions, list.sort() and
sorted(), had an extremely high internal reliability as calculated
using Cronbach’s alpha [13] (𝛼 = 0.94 and 𝛼 = 0.88 respectively).
As such, we average them to compute an average familiarity score
for each of the functions. Overall, students reported being unfa-
miliar with both functions prior to the practice activity (Figure 3a).
A series of Shapiro-Wilks tests indicate that these distributions
deviate from a normal distribution (Table 4, Appendix A). As such
we select the non-parametric Mann-Whitney U Test to compare
the groups in terms of their self-reported familiarity with each of
the functions. For students taking the post test, our results indicate
there is no significant difference between the groups in terms of
their familiarity with the list.sort() (U=944.5, z=21.49, p=0.85)
or sorted() (U=1152.5, z=26.22, p=0.11) functions. Similarly, there
is no significant difference between the groups for students that
returned for the retention test for either the list.sort() (U=820.0,
z=22.24, p=0.12) or sorted() (U=719.5, z=19.51, p=0.65) functions.

Comparison in Exam Score: In place of a pre-test, we use stu-
dents scores on an recent exam given in the course from which the
students were sampled. This exam was given the same week during
which the study took place. This exam consists of: 1) multiple-
choice and true-false (10 questions), 2) single line code writing (5
questions) 3) code writing (5 questions), 4) code reading (1 question),
5) code tracing (5 questions), and 6) Parsons problems (2 questions).
The test is a 50-minute exam given on the PrairieLearn online, as-
sessment platform [82] and in the same proctored computer based
testing environment [89] in which this study took place. A series of
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Figure 3: Comparing the similarity of the participants in each practice condition in terms of their prior familiarity with the
topic and their more general programming skill.

Shapiro-Wilks tests indicate that these distributions deviate from a
normal distribution (Table 5, Appendix A). Therefore, we select the
non-parametric Mann-Whitney U Test to compare the groups in
terms of their exam performance. The results indicate that there is
no significant difference between the distractors and no distractors
for participants who completed the post-test (U=1136.0, z=23.57,
p=0.56). Similarly, for the retention test, there was no significant
difference in exam performance between the distractors and no
distractors groups (U=711.5, z=19.29, p=0.74). As a result, students
in both groups, for both the post and retention tests, were similar
in general programming ability at the time of the study.

Time Spent on Studies: The vast majority of students were suc-
cessful in completing all of the practice activities in both the dis-
tractor group (M=96%, SD=11%) and the no distractor group (M=97%,
SD=11%). Similarly, the average time taken on part one of the
study (presurvey, reading, practice, and post test) was 47.38 minutes
(SD=16.94) for the distractor condition and 46.61 minutes (SD=19.49)
for the no distractor condition, with the longest duration being 96.55
minutes.This indicates that students had ample time to complete ev-
erything within the one-hour and fifty minute time limit. Similarly,
for the 50-minute retention test, students on average took 24.79
minutes (SD=9.85), with the longest duration being 49.32 minutes.

Relationship between Test Scores and Time-on-Task: Students in
the practice condition with distractors (M=20.67, SD=6.48) spent
considerably more time on questions than those in the practice con-
dition without distractors (M=12.89, SD=5.55). However, in looking
more closely at the relationship between practice time and per-
formance on the post and retention test, we see the trends differ
between the two conditions (Figure 4). In the condition with dis-
tractors, practice time had a slight, though not significant, negative
correlation with performance for both the post and retention tests
(r=-0.19, p=0.189 and r=-0.23, p=0.148 respectively). However, in
the condition containing no distractors, practice time was uncorre-
lated with performance on both the post test (r=0.01, p=0.960) and
retention test (r=0.08, p=0.635).
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Figure 4: Students in the practice condition with distractors
spent roughly double the amount of time on the practice
activity than those in the practice

4.1 Analysis
To address the research questions relating to differences in per-
formance between the two conditions on the post and retention
tests (RQ1, RQ2), we perform an Ordinary Least Squares (OLS)
regression.

Score = 𝛽0 + 𝛽1 · Distractors
+ 𝛾2 · FamiliaritySort + 𝛾3 · FamiliaritySorted
+ 𝛾4 · Exam

This regression is used twice, where the dependent variable (Per-
formance) is the score on each of the tests: post and retention. The
Distractors predictor is a binary variable indicating whether that
student was in the no distractors (0) or the distractors (1) practice
condition. We include the students’ self reported familiarity score
(0-4) for each of the Python functions the activities covered (Fa-
miliaritySort and FamiliaritySorted). To account for their general
programming ability at the time of the study, we use their perfor-
mance (0-100) on a an exam taken in the course from which they
were recruited which took place in the same week the study was
conducted. We discuss this further in Section 6.2.
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4.2 Results
4.2.1 Differences in Performance on the Post Test (RQ1). Looking
first at the raw scores on the posttest, we see that students in the
practice condition that included distractors (M=43.89, SD=32.44)
outperformed those in the condition without distractors (M=31.28,
SD=21.51) by a large margin (Figure 5a). The results of the regres-
sion analysis confirm this difference is statistically significant and
indicates students in the distractors condition performed approxi-
mately 12 percentage points better than those in the no distractors
condition on the overall test (Table 3).

4.2.2 Differences in Performance on the Retention Test (RQ2). Look-
ing first at the raw scores on the posttest, we see that students in
the practice condition that included distractors (M=45.41, SD=29.43
) still outperformed those in the condition without distractors
(M=34.01, SD=22.44) by a large margin (Figure 5a). The results
of the regression indicate that that difference was marginally in-
significant. In more closely looking at the performance differences
by question type we see that students in the distractors condition
still outperformed their no distractors counterparts by a large mar-
gin on "Explain Error" questions. This may indicate that, though
students ability to use and correct incorrect usage of the functions
they practiced had waned, their ability to recognize incorrect usage
of those functions was retained.

5 QUALITATIVE STUDY - ANALYSIS AND
RESULTS

In total, ten think aloud interviews were conducted. The audio
recordings from the interviews were transcribed. Researchers then
performed thematic analysis on the resulting transcripts. Following
themethod presented by Jones et al. [40], researchers independently
coded the first three interviews and met to discuss and consolidate
a set of common themes. The remaining seven interviews were
then independently coded by the two researchers using the consol-
idated themes. The researchers met to reconcile disagreements and
integrate any new themes that emerged.

The results of the thematic analysis are presented as follows.
Section 5.1 covers themes relating to how students solved Par-
sons problems and how the inclusion of distractors influenced it.
Section 5.2 covers themes that emerged relating to students’ per-
ceptions of difficulty, distractor feedback mechanism, and learning
potential of the problems they encountered.

• Brackets ([]) are used to add explanatory text to clarify what
the student in the quote is referring to or add context on
what the student is doing. (e.g., this [block] is, this [clicks on
block]).

• A dash (—) indicates a hard stop in a sentence.
• Ellipsis (. . . ) is used to indicate the removal of text.

Beyond the inclusion of these notations, the quotes had minimal
changes made to them. The only change made to the text was the
removal of excessive filler words that may hinder the reading and
interpretation of the quote.

5.1 Solving Parsons Problems with Distractor
Blocks (RQ3)

In this section, we highlight two key themes: 1) students’ ap-
proaches to placing blocks that were not associated with distractors
(Section 5.1.1) and 2) how the inclusion of distractors altered their
behaviour (Section 5.1.2).

5.1.1 Students often place blocks not grouped with distractors with-
out attending to the details of the code block: When interacting with
blocks of code that were not grouped with distractors, students
often placed blocks without closely attending to the code within
the block. Rather, when placing these blocks, they referred to the
common format for these code segments, e.g., function definition,
for loop, conditional.

Interview 9: “So starts with the definition defining it
— and indent the for loop — and then again for the
print because it’ll iterate through okay, yeah, that
was pretty easy. ”
Interview 2: “ I know how the code would look
typically, like the structure of it. You define the
function, then there’s an indent and there’s a for
[loop]...”

In extreme examples, some students were able to solve problems
using these heuristics to solve all, or part of a problem, without
reading the problem description.

Interview 2: “Definition first. . . return values last
probably. . . Have to initialize this for loop condi-
tional, and then what it does in the conditional.”
[Gets the answer correct].
“Yeah, kinda even without reading the directions
I kind of – Yeah, I kind of knew it was this without
reading the directions just because of how it’s format-
ted.”

This shallow interaction with the code contained within a given
block is particularly at odds when exercises are introducing new
concepts within those blocks.

5.1.2 Distractors focus attention on blocks that they are associated
with: The presence of distractors appear to be an antidote to the
formerly raised issue of students placing blocks without attending
to the details of the code within said blocks. This was made evident
by many students stopping to carefully read through and compare
the various blocks within the distractor group:

Interview 2: “... then I need to pick one of these
[blocks in distractor group] to go in between these
two [blocks in solution]. It’s kind of tricky to know if
it’s value and key or key and then value. I think
you need these parentheses by the items so I think
it’s one of these ones [blocks ending with parenthe-
ses].”
Interview 1: “And it’s name [key] first and grade
[value] second so we’re going to choose from this
[blocks with name, grade].”
Interview 8: “So— I know this one [for v, k in d.items()]
is supposed to be key comma value. I know this
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Figure 5: Performance differences between those practicing with distractors and those practicing without both in terms of
overall performance and on each question type for the post and retention tests.

Table 3: OLS Regression Results. The group who solved Parsons Problems with distractors performed 12% better on the post
test and 10% better on the retention test, even when controlling for prior student ability.

(a) Post Test

Coef. Std.Err. t P>|t| [0.025 0.975]

Intercept -0.85 0.16 -5.19 0.000*** -1.17 -0.52
Distractors 0.12 0.05 2.43 0.017* 0.02 0.21
ExamScore 0.01 0.00 7.56 0.000*** 0.01 0.02
FamiliaritySort 0.01 0.04 0.16 0.874 -0.07 0.08
FamiliaritySorted 0.01 0.04 0.15 0.884 -0.07 0.08

𝑅2adj: 0.42 F-statistic: 16.56 N-obs: 88

* p<0.05, ** p<0.01, *** p<0.001

(b) Retention Test

Coef. Std.Err. t P>|t| [0.025 0.975]

Intercept -0.96 0.18 -5.21 0.000*** -1.32 -0.59
Distractors 0.10 0.05 1.95 0.055 -0.00 0.20
ExamScore 0.02 0.00 7.51 0.000*** 0.01 0.02
FamiliaritySort -0.01 0.04 -0.25 0.801 -0.09 0.07
FamiliaritySorted -0.00 0.04 -0.00 0.999 -0.08 0.08

𝑅2adj: 0.44 F-statistic: 15.53 N-obs: 74

* p<0.05, ** p<0.01, *** p<0.001

one is incorrect. So if I had to guess [it would] proba-
bly be this [for k, v in d.items()].”

In reflecting on differences in their experiences solving Parsons
problems both with and without distractors, several students ex-
plicitly stated: 1) that they often place blocks that are not grouped
with distractors without attending to the details of the code within
the block and 2) that distractors forced them out of this behavior.

Interview 4: “And the ones [questions] without the
distractions were a lot quicker to solve because I know
— I know how the code would look typically. Like
the structure of it. You define the function then
there’s an indent and there’s a for [loop]. So those
were a lot quicker to solve. But I don’t think I really
paid attention to what the code was about. I just
kind of dragged it [and], I was like, I know this is
gonna be right. But the ones with distractors I
think made me think a lot more.”

Interview 9: “You got to make sure you’re really
paying attention to the layout of that [code block]
and making sure you’re doing it all correctly [with
distractors], rather than when there aren’t the distrac-
tors.”

An objective of both the quantitative study and qualitative stud-
ies was to introduce a new concept and have students practice that

concept with Parsons problems. Given that goal, many of the prob-
lems students encountered in both activities contained a mixture of
simple problems (e.g., 2-4 blocks of code) and recognizable patterns
(e.g., counting, filtering, categorizing) which may have exacerbated
the degree to which students could successfully place blocks with-
out closely attending to the details within. Though there may be
arguments for grouping distractors with all blocks in such a con-
dition so students are forced to attend to all the blocks, it appears
from our results that at minimum those blocks which contain the
concept being introduced should be coupled with some number of
distractors.

5.2 Perceptions of Distractor Blocks (RQ4)
We highlight two thematic groups that emerged which pertain
to students’ perceptions of practicing with Parsons problems that
contain distractors.

5.2.1 Relationship Between Difficulty and Learning. When asked
to compare the two types of questions in terms of difficulty, the
majority of students reported finding those questions that contained
distractors as being more difficult than those without distractors.

Interview 4: “So the ones without distractors are defi-
nitely the easier ones.”

Interview 6: “I mean, obviously, the one with like the
distractors has a higher difficulty”
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Despite this added difficulty students, by in large, still responded
more positively to questions that contained distractors when
queried on the matter. In particular, they cite the perception that
the added level of difficulty contributed to their learning of the
concept they were practicing.

Interview 9: “I would say the ones with the distractor
because, just because they were harder questions
and they required more thought...”
Interview 8: “Yeah. So I feel like the blue blocks [distrac-
tor blocks], even though they were more difficult,
I feel like I learned more. I learned that the format
for it was key, comma value, and you had to put the
d dot items with the parentheses. . . But with the blue
blocks, I still understood the question better. So it
was difficult, but I still understood it better. So it
taught me more.”

Related to the findings of Section 5.1.2, several students explicitly
stated their perceived learning benifits of distractors was due to
the distractor blocks causing them to more closely attend to the
implementation details of the code blocks with which the distractor
blocks were grouped.

Interview 5: “I think it definitely helped because hav-
ing a [problem] that have distractors really makes
you more attentive on how it should be, because
later on, I’ll be writing these functions by hand with-
out a structure already given to me. And I think that
having those distractors are very important, because
those are very common errors that I might make
while writing functions.”
Interview 2: “As someone that wants to learn, the one
with the distractors is definitely better. Because you
have to think harder about it.With no distractors,
it’s definitely easier to just kind of get in the
groove of the format and not really worry about
the actual line of code.”

However, perceptions regarding the learning value of the diffi-
culty provided by the distractors was not universal. Two students
indicated they found the presence of distractor blocks overwhelm-
ing and unhelpful.

Interview 3: “Yeah, I think it’s way easier to do it when
there aren’t a bunch of like – codes, and [distractor]
blocks. Because then even when you know the
answer, you kind of overthink it and it takes
longer.”
Interview 10: “When you have distractor, there’s a
lot going on, right? And so you don’t really know —
Okay, so now I have to think of, you know, which line
to use, right? ... For me, as a beginner, not having
any Python experience before the class, I would
prefer no distractors. And then maybe as we get
more advanced, towards the end of the semester in
[course], then you will have more distractors...”

The primary takeaway of the interviews is that, though students
found Parsons problems that contained distractor blocks to be more

difficult, they both valued this difficulty and perceived it as con-
tributing to their learning. Students, by and large, had a sense of
the value of “desirable difficulties” which lead those difficulties that
they did encounter to be valuable for their learning rather than
merely obstacles. However, instructors should be aware that the
presence of distractors may increase the difficulty of problems to
be beyond what some students are capable (i.e., outside their zone
of proximal development). This may reinforce the need for Parsons
problems that are adaptive or investigations into other methods
of scaffolding students’ interactions with distractors. Providing a
large number of attempts for each Parson problem may also help
to address concerns about question difficulty.

5.2.2 The Perceptions and Role of Distractor Feedback. All students
who encountered the feedback associated with distractors reflected
on it positively. In particular, students noted the feedback both
elucidated the origin of the error and reinforced the proper syntax
of the block:

Interview 4: “I think the yellow boxes [distractor
feedback, Figure 2b] really helped me under-
stand why it was wrong. So the first one, when
iterating over a list of tuples, it tells — it told me that
the order is key then value instead of value then key.
Which helped me reinforce that my brain, especially
from the reading, too. And then I think it just helped
reinforce proper code format and what code should
typically look like.”

Interview 5: “The first one [error] was the first question
or just that usually do the key first before the value.
And I was like, oh, okay, that makes a lot more sense...
Once I had that feedback, I felt a lot more clear
about how it’s supposed to be structured. And
that helped me a lot”

One student noted that the immediacy of the detailed feedback
was useful and contrasted it with cases where feedback was not
available.

Interview 3: “I think a typo may tell you why some-
thing is wrong, because then that’s something you’re
gonna remember. If they just tell youwhat’s wrong
with no reason, then it’s – it’s a task to go and
look it up or go back to the textbook. So I would
have probably just let it go. But when someone tells
you why something’s wrong... you’re gonna re-
member that and not make that mistake again.”

However, one student did note that their interaction with the
feedback was superficial, and, though it did help them arrive at the
correct solution, it did not lead to a deeper understanding of the
function they were learning.

Interview 2: “The one that I really remember was when
I picked the incorrect distractor for v comma k. And
it told me that it should have been key comma value.
Honestly, I don’t really know if it explained why
or if I just kind of skimmed over it to understand
what the right answer was. But it was helpful in
me getting the right answer. Although I don’t really
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understand why should be k and then v instead of the
other way. ”

As the original goal of distractors was to aid in correcting com-
mon errors and misconceptions in a scaffolded environment, these
results provide indications that coupling distractors with feedback
may aid in that reinforcement.

6 DISCUSSION
In the spirit of the explanatory mixed-methods approach used, we
highlight two key takeaways using the results of the quantitative
and qualitative results. In Section 6.1 we explore how differences
in how students interact with problems containing distractors com-
pared to those that do not may explain the learning differences
observed between those conditions in the quantitative results. Sim-
ilarly, in Section 6.2 we explore how the relationship between prac-
tice time and performance on the retention test differed between
the two conditions.

6.1 Distractor Blocks and Attention
Sweller [76] provides selective attention as an example of how
certain problem solving strategies can be at odds with learning.

“Solving a problem and acquiring schemas [learning]
may require largely unrelated cognitive processes...
Previously used problem-solving operators and the
relations between problem states and operators can be
totally ignored by problem solvers using this strategy
under most conditions.”

Similarly, Rehder and Hoffman [66] showed that as individuals gain
experience with categorizing various entities they optimize their
attention to attend to the minimal set of features needed for correct
categorization. The results of the qualitative analysis suggest that
each of these are true, to some degree, for students experienced
with solving Parsons problems.

Students in this study where midway through their semester
and had encountered Parsons problems throughout their weekly
homeworks as well as their exams. They were very familiar with
the problem type and had experience solving them. As such, many
of these students showed evidence of categorizing the blocks based
on their purpose (e.g., for loop over list, if statement, add item to the
list). Similarly, students showed evidence of correctly identifying
relationships between blocks they categorized (e.g., if statement usu-
ally goes in for loop). However, in many cases students seemingly
placed these blocks without closely attending to their implementa-
tion details. It was only when blocks were grouped with distractors
that students closely read and compared the code within those
grouped blocks.

The goal of the activity was to provide students practice using a
function they had not previously encountered. If students are able
to place blocks of code without closely attending to the syntax and
semantics of the new function this appears to limit their ability
to remember how to use that function in subsequent code fixing
and code writing activities. Distractors offer the opportunity for
instructors to draw students attention to lines of code that align
with the learning objectives of the practice problems. Similarly, the
inclusion of descriptive feedback on why a distractor is incorrect
can further elucidate the nature of the error.

6.2 Distractor Blocks, Practice Time, and
Learning

There was one notable exception, the relationship between practice
time and performance on both the post and retention tests. Students
practicing with distractors had a weak negative correlation between
the time they spent on the practice activity and their performance
on those tests. It is worth noting that this correlation was statisti-
cally insignificant and may be the result of a few outliers who took
a great deal of time on the practice activity and performed poorly
on the subsequent tests. Nevertheless, this result stands contrary
to the intuition that increased time-on-task leads to more time
spent learning and therefore better performance. It may be the case
that, for a number of students, the inclusion of distractors pushed
them out of their Zone of Proximal Development and lead to more
time spent struggling rather than learning. This was reflected in
one instance during the think-aloud interviews where one student
showed signs of struggling with the distractors and appeared to dis-
engage from the activity, simply trying the distractors one after the
other rather than attending to their implementations. Future work
should further consider this relationship, its causes, and further
scaffolding that can be used to support students who may struggle
with distractors such as adaptive Parsons problems.

7 LIMITATIONS AND FUTUREWORK
This work suffers from three core limitations that result from the
experimental design. The first is that the familiarity survey was only
given prior to the post-test. As such, in the analysis of the retention
test, we are unable to account for any additional familiarity they
may have gained from outside resources in the week between taking
the post-test and the retention test. The risk of participants further
encountering these concepts is small, as they were not taught in
the course from which participants were sampled until well after
the study’s conclusion, but we cannot negate the possibility of
participants engaging in independent study or reading ahead in
their text book.

Second, and again with respect to the retention test, it is difficult
to disentangle the impact of the practice from the impact of the
post-test on the participants’ performance on the retention test.
The testing effect is a well understood phenomenon where the
act of engaging in retrieval can improve long-term memory of the
concept the test taker is being tested on [69]. The results relating to
the retention test should be taken as the aggregate impact of study
under a particular condition (i.e., distractors or no distractors) and
any learning that occurred during the post-test.

Finally, both the qualitative and quantitative studies were fo-
cused on teaching participants functions that relate to Python’s
built-in data structures. Though the results of the qualitative study
seem clear that distractors are required to focus participants on the
implementation details of a given code block, it is unclear how the
magnitude of the learning gains seen in this study would translate
when using Parsons problems to teach other concepts (e.g., logic,
conditionals, loops). Future work should investigate the impact of
distractors on learning in a wider variety of topics.
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8 CONCLUSION
Overall, we find strong evidence in support of including distractor
blocks in Parsons problems when they are used in formative activi-
ties. The result of our randomized control trials show that students
perform better on a post-test when practicing a new topic with
Parsons problems that include distractors. The results of our think-
aloud interviews indicate that this performance gain may largely
be explained by the distractors causing students to more closely
attend to the implementation of the code within the blocks with
which distractors are grouped. The recommendation that follows
from these results is that, if Parsons problems are to be used as a
tool for introducing students to new concepts, distractors play an
essential role in ensuring student success when they attempt to
transfer those skills to code writing and fixing activities.
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A NORMALITY TESTS

Table 4: Shapiro-Wilk Normality Test Results for Familiarity
Scores

Group Test Function Survey W p

Distractors Post-Test Sorted 0.794 5.13e-06***
Sort 0.899 0.00177**

Retention Test Sorted 0.787 1.00e-06***
Sort 0.898 0.00070***

No Distractors Post-Test Sorted 0.747 2.81e-06***
Sort 0.898 0.00417**

Retention Test Sorted 0.796 3.66e-06***
Sort 0.896 0.00113**

Table 5: Shapiro-Wilk Normality Test Results for Exam
Scores

Group Test W p

Distractors Post-Test 0.801 2.05e10-06***
Retention Test 0.764 1.32e10-06***

No Distractors Post-Test 0.914 0.00385**
Retention Test 0.915 0.0119***
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