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ABSTRACT
Learning to program can be challenging, and providing high-quality
and timely support at scale is hard. Generative AI and its products,
like ChatGPT, can create a solution for most intro-level program-
ming problems. However, students might use these tools to just
generate code for them, resulting in reduced engagement and lim-
ited learning. In this paper, we present CodeTailor, a system that
leverages a large language model (LLM) to provide personalized
help to students while still encouraging cognitive engagement.
CodeTailor provides a personalized Parsons puzzle to support strug-
gling students. In a Parsons puzzle, students place mixed-up code
blocks in the correct order to solve a problem. A technical evalua-
tion with previous incorrect student code snippets demonstrated
that CodeTailor could deliver high-quality (correct, personalized,
and concise) Parsons puzzles based on their incorrect code. We
conducted a within-subjects study with 18 novice programmers.
Participants perceived CodeTailor as more engaging than just re-
ceiving an LLM-generated solution (the baseline condition). In
addition, participants applied more supported elements from the
scaffolded practice to the posttest when using CodeTailor than base-
line. Overall, most participants preferred using CodeTailor versus
just receiving the LLM-generated code for learning. Qualitative
observations and interviews also provided evidence for the benefits
of CodeTailor, including thinking more about solution construction,
fostering continuity in learning, promoting reflection, and boost-
ing confidence. We suggest future design ideas to facilitate active
learning opportunities with generative AI techniques.
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1 INTRODUCTION
Beginners often find learning to program difficult, and they have to
invest a significant amount of time to write and debug their code
[5, 53]. This process can be frustrating and lead to doubts about their
ability to learn to program [20, 36]. Meanwhile, the notable increase
in the enrollment of intro CS courses makes one-on-one guidance
from human experts hard to scale in large classrooms [18, 54].
Recently, large language models (LLMs) have opened up new ways
for timely, adaptive, and scalable programming support [46]. For
example, they can create complete programs directly from natural
language input [30, 44]. However, as LLM products have increased
adaptability and ease of use, there are rising concerns about their
over-utilization in computing education [35]. Because LLMs can
solve most existing CS1 programming problems [12], students may
simply copy the problem description to an AI code generator and
copy the solution back to their development environment, without
thinking about the AI-generated solution [30]. Another concern
is that today’s AI systems can generate inaccurate solutions and
potentially mislead students [35].

How can we leverage LLMs to support students who strug-
gle while practicing programming without hindering learning?
We present CodeTailor, a system that delivers real-time, on-
demand, and multi-staged personalized puzzles to support
struggling students while programming (Fig. 1). CodeTailor distin-
guishes itself from existing LLM-based products by providing an
active learning opportunity where students are expected to "solve"
the puzzle rather than simply acting as passive consumers by "read-
ing" a direct solution [11].

CodeTailor supports students with personalized Parsons puzzles.
In a Parsons puzzle, students are presented with mixed-up blocks in
a source area on the left, and the student drags blocks and arranges
them in order in a solution area on the right, as shown in Fig. 1
[15, 42]. Parsons puzzles can have distractor blocks that are not
needed in a correct solution. In CodeTailor, when students work
on programming tasks and get stuck, they can request help, and
CodeTailor will then provide a two-staged personalized Parsons
puzzle based on their incorrect code. CodeTailor provides two levels
of personalization, namely at the code solution level and at the
block setup level. At the code solution level, CodeTailor creates a
personalized correct solution tailored to match the structure, logic,
and variable names in the student’s existing unfinished or incorrect
code. At the block setup level, the mixed-up blocks in the puzzle
are adapted to the students’ current problem-solving progress in
three dimensions: pre-placement of correct lines – students’ correctly
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Figure 1: The CodeTailor interface contains a programming area on the left and a pop-up personalized Parsons puzzle as
support on the right. It provides timely feedback after checking (G) and allows students to copy (H) the finished solution (I).

written lines are pre-placed as static (not movable) blocks in the
solution area; reuse of incorrect lines – students’ incorrectly written
lines are used as distractor blocks; and conditional combining blocks
– students can combine blocks after three unsuccessful attempts on
a fully movable puzzle (one in which all blocks are movable).

We conducted two evaluation studies. The technical evaluation
assessed the material quality and indicated that CodeTailor can
deliver high-quality (correct, personalized, and concise) Parsons puz-
zles to support students at scale without human intervention. A
within-subjects think-aloud study was conducted with 18 novice
programmers. The baseline condition simulates how students may
naturally request help from generative AI products when having
difficulty solving programming problems, i.e., asking an LLM to
create a solution from the problem description [30]. Results showed
that students found CodeTailor more engaging than just receiving
an AI generated solution and most students (88%) preferred using
CodeTailor versus passively obtaining a direct AI code solution for
learning. Students could also apply more newly obtained elements
from the supported practice to the posttest when using CodeTailor
versus when just receiving an AI-generated solution.

2 RELATEDWORK
This section motivates the design of CodeTailor by discussing prior
research on using LLMs in CS education and other methods that
assist students who struggle while programming.

2.1 Large Language Models in CS education
With the development of generative AI, educational researchers
are studying how it can contribute to instructional content creation
and personalized learning experiences [3, 21, 51]. In CS education,
researchers are exploring the potential of LLMs, including assessing
the performance on completing different CS learning tasks [12]
and generating instructional content [8, 33, 43]. Research has also
explored how LLMs can fulfill educational roles beyond offline

instructional content creation, including serving as TAs to respond
to help requests [23, 63], as pair programmers [46], and as simulated
students for teacher training [38].

While the above work highlights LLMs’ capability to benefit
CS learning, concerns over the inappropriate application of such
systems in education are growing [32, 41, 56], especially when it
comes to students’ abusing LLMs’ ability to generate code. After
speaking with instructors of beginner-level programming courses,
Lau and Guo reported that a common concern was that students
who relied on AI code generation tools to get answers would not
learn the material [35]. As Kazemitabaar et al. found, when students
were given an AI code generator directly, more than half of the
time they used it before trying to write any code. Of these initial AI
code generator usages, nearly half of the instances were requesting
a complete solution [30]. Additionally, novice students who over-
rely on AI code generators may experience fake training progress,
and thus miss learning opportunities during practice, which makes
it harder for them to apply fundamental concepts later [30]. To
prevent improper usage of AI code generation tools, one recent
study developed a system to generate textual responses to student
requests that are similar to what a human tutor would deliver [37].
However, some students found it difficult to use because they had to
type their input and did not always know what to ask. Furthermore,
the long and plain textual materials discouraged active learning
unless students used self-explanation while reading the text [11]. In
addition, the generated output could be factually incorrect due to
the limitations of LLMs. Recent generative AI models perform well
in understanding and generating code outputs, which forms a basis
for scalable personalization in programming learning scenarios
[48]. To harness the power of LLMs and address the two aforemen-
tioned concerns, CodeTailor aims to achieve two high-level goals:
generate correct code solutions using LLMs in real-time, and
establish a programming support system that encourages
engagement and active learning.
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2.2 Scaffolding student programming
Previous research on assisting students while learning program-
ming has investigated different scaffolding methods. Scaffolding,
as defined by Bruner [7], involves providing support to students to
learn a skill beyond their current level. One common approach to
timely assistance is detailed hints based on the students’ current
code state, aiming to help students progress toward a correct so-
lution [31, 39, 50, 63]. A more comprehensive scaffolding resource
could be a library of code examples for students to refer to during
practice [61]. However, one concern about using examples or hints
is that they could lead to disengagement and passive learning [11].

Active learning refers to instructional methods that engage stu-
dents cognitively and meaningfully with the instructional materials
in a learning task [11, 47]. Instead of just passively receiving in-
formation, students interact with the instructional materials and
actively digest the content [6]. The ICAP framework, proposed by
Chi and Wylie, divides students’ cognitive engagement modes into
four categories: passive (just receiving the material), active (actively
moving and participating), constructive (self-explaining and gen-
erating), and interactive (peer discussion), from least effective to
most effective [11]. Apart from being cognitively engaged with
instructional resources in various modes, students might also be
disengaged, such as being off-task or exploiting help from the scaf-
folding [2, 9, 19]. Parsons puzzles are a type of completion problem
[57] and solving these puzzles involve physical movement and at-
tention by rearranging code blocks and choosing a block from a set
of options, aligning with the concept of active engagement in the
ICAP framework [11, 14]. Therefore, delivering personalized Par-
sons puzzles as scaffolding can encourage students to cognitively
attend to the practice material. This approach has the potential to
provide greater learning than just reading text. This goal drove the
design of CodeTailor to deliver Parsons puzzles as scaffolding
to support students who struggle while programming.

2.3 Parsons puzzles
In Parsons puzzles, students arrange mixed-up blocks to solve a
problem [16, 42]. Typically, the mixed-up blocks are presented sepa-
rately from the solution area. Students need to drag all the required
blocks into the solution area and arrange them there [15]. There
are various Parsons puzzle types. For example, in one-dimensional
Parsons puzzles, code blocks only need to be organized in the right
vertical sequence, while in two-dimensional Parsons puzzles, the
blocks must additionally be appropriately indented horizontally
[28]. Distractors, code blocks that are not part of the correct solu-
tion, can also be added to illustrate common misconceptions [15].
Problems with paired distractors, where learners are instructed to
pick the correct block from a visually paired block set with one
correct block and one distractor block, are easier to solve than those
with unpaired distractors [15].

Previous research has explored using a fullymovable two-dimensional
Parsons puzzle to assist students who struggle while programming
from scratch [24–26]. In a fully movable Parsons puzzle, students
start with an empty solution area, and have to drag and arrange all
the needed blocks into the solution area to form a solution. Also,
Parsons puzzles were created from a representative most common
prior student solution and had expert-created distractors in the pre-
vious studies[24–26]. The results demonstrated that this scaffolding

could improve students’ practice performance and problem-solving
efficiency compared to traditional text entry without any support
[24, 26]. However, challenges were also reported. For example, the
provided solution in the puzzle did not make sense to students who
had a different strategy in mind. Also, the expert-written distrac-
tor blocks sometimes led students astray unnecessarily [22, 24].
In addition, using a fully movable Parsons puzzle as scaffolding
may be unnecessary for some students, as they may merely scan
or move some blocks without actually solving the problem [26].
Students may benefit from more concise support that does not
require them to work on a full puzzle. CodeTailor was designed
to address these challenges, and it incorporates improvements at
both the solution and Parsons block level: solutions in the Par-
sons puzzles should be close to students’ existing code; the
provided Parsons puzzles should be concise; and the Parsons
puzzles should pinpoint students’ misconceptions.

3 SYSTEM DESIGN
CodeTailor offers real-time, personalized Parsons puzzles to stu-
dents as support while they work on short programming tasks, a
typical practice type in intro programming learning [59].

3.1 Overview of CodeTailor
CodeTailor starts with a traditional short programming task with a
description, an input programming area, and a "Save & Run" button
to execute the code and display the unit test results. It includes a
"Help" button to trigger a personalized Parsons puzzle as support.
After clicking the "Help" button, students first see a loading bar
containing a spinning loader with encouragement (Fig. 1.J). Once
loaded, students see a one-dimensional personalized Parsons puzzle.

This personalized Parsons puzzle is made using a correct solu-
tion that is tailored to align with the student’s existing incorrect
code. When creating the puzzle, it first separates this correct code
solution into mixed-up code blocks based on the indentation level
changes. Then, it offers a fully movable Parsons puzzle or a partially
movable one to students, depending on their code progress. In a
fully movable Parsons puzzle, students receive a set of normal
movable blocks that are part of the solution (Fig. 2A-P1) with a
"Combine Blocks" feature (Fig. 2A-K). This feature can be activated
when students have made three failed complete attempts. When
activated, it merges two blocks into one to reduce the difficulty
of the puzzle. However, this feature is disabled when only three
movable blocks are left.

In a partially movable Parsons puzzle, there are three types of
code blocks. Aside from normal mixed-up movable blocks for a
solution, we also included static correct blocks (Fig. 1.A), which
are pre-placed in the solution area to make the puzzle more concise
to solve, and paired distractor sets (Fig. 1.C), which are unneces-
sary blocks that emphasize misconceptions. Static correct blocks
are created from the student’s correctly written code (Fig. 2B-P3).
When receiving a partially movable Parsons puzzle, these blocks are
already placed in the solution area with a dark green background
and are not movable (Fig. 1.A). White areas at the top and bottom of
the static correct blocks indicate how many blocks are still required
in that area to solve this puzzle. Students can also hover over a
static correct block to check the number of blocks missing above
and below it in the relative location (Fig. 1.B).
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In a partially movable Parsons puzzle, there are also paired dis-
tractor sets. Each pair consists of two blocks connected with a
purple edge and an "or" (Fig. 1.C). For the two movable code blocks
in one paired distractor set, only one code block is necessary for the
correct solution. In CodeTailor, the distractor code block is either
created using the student’s incorrectly written code (Fig. 2B-P2)
or generated using an LLM from the student’s correctly written
code (Fig. 2C-P4). When solving the personalized Parsons puzzles
in CodeTailor, students can use the "Check" button to check their
answer and receive block-based feedback that highlights the incor-
rect blocks (Fig. 1.G). After completing a puzzle (Fig. 1.I), students
can copy the solution to the clipboard with the "Copy Answer to
Clipboard" button instead of retyping it (Fig. 1.H). Students can
also regenerate a new personalized Parsons puzzle (Fig. 1.E) at any
point. This gives students more control when they are unsatisfied
with the current personalized Parsons puzzle or when they need
updated assistance after changing their code.
3.2 Personalization Scenarios in CodeTailor
In this section, we use three hypothetical student scenarios to
demonstrate CodeTailor’s personalization in more detail.

Scenario A: Receive a fully movable Parsons puzzle that
includes the "combine block" feature and no distractors (Fig.
2A). After learning basic Python concepts, Rita practices her pro-
gramming skills with CodeTailor. She tries to type one line, but
gets stuck and requests help. As Rita is in the early problem-solving
stages and has not written much code, CodeTailor provides a fully
movable Parsons puzzle without distractors (Fig. 2A). Rita tries to
solve the puzzle but still struggles after four tries. She then com-
bines two blocks into one (Fig. 2A.F). She then completes the puzzle,
retypes the puzzle solution, and passes all unit tests.

Figure 2: Three example scenarios with CodeTailor

Scenario B: Receive a partially movable Parsons puzzle
with paired distractors created from student errors (Fig. 2B).
Molly completed an intro-level Python course three months ago and
is now practicing with CodeTailor. She asks for help when she needs
assistance with her code. CodeTailor provides a partially movable
Parsons problem, where her correctly written code lines are set as
static correct blocks in the solution area and the remaining blocks
(generated by CodeTailor to fix Molly’s errors) are movable. Addi-
tionally, CodeTailor generates targeted distractors using Molly’s
incorrectly written code. After seeing a distractor, Molly realizes
that she forgot to include a colon on that line. She completes the
puzzle, copies the solution, and submits it, passing all unit tests.

Scenario C: Receive a partially movable Parsons puzzle
with paired distractors from AI and student errors. (Fig. 2C).
Luna practices Python programming with CodeTailor to prepare
for advanced courses. When she encounters errors after believing
she has solved a problem, she asks CodeTailor for help. CodeTailor
provides a partially movable Parsons puzzle. Since Luna’s code
only has errors on one line, CodeTailor generates a distractor set
based on that error and also converts one of her correctly written
lines into a movable line with an LLM-generated logical error. Luna
compares the LLM-generated distractor with the other paired block
to reinforce her understanding of "ascending". She then completes
the Parsons puzzle, modifies her code, and passes all the unit tests.

4 IMPLEMENTATION
CodeTailor first processes the incorrect code and generates a per-
sonalized correct solution using OpenAI’s GPT-4 model. It then
generates various types of code blocks from this personalized cor-
rect solution and creates an interactive personalized Parsons puzzle.

4.1 Stage 1: Generate a personalized correct
solution from a student’s incorrect code

4.1.1 Pipeline overview. First, CodeTailor fills in a prompt template
with the student’s incorrect code and corresponding problem in-
formation (Fig. 3-1). Then, it sends the finished prompt to the LLM
model (OpenAI’s GPT-4 model in our case) to generate a response.
After receiving the response, CodeTailor pre-processes the response
to only extract the LLM-generated code (Fig. 3-2) and automatically
evaluates this LLM-generated code (Fig. 3-3) based on its correct-
ness (Fig. 3-3.1) and closeness with the student’s incorrect code (Fig.
3-3.2). If the LLM-generated code passes both evaluations, it contin-
ues to Stage 2 to generate Parsons puzzle blocks (Fig. 3-Stage 2). If
the code does not pass the evaluations, CodeTailor sends a request
back to the LLM with an updated prompt (Fig. 3-3.3) and requests
the LLM to retry generating a solution. If the LLM-generated code
fails to meet the evaluation criteria after three attempts, CodeTai-
lor creates the Parsons puzzle based on the low-level personalized
version of a most common prior solution.

4.1.2 CodeTailor’s LLM prompt structures. For each API request,
CodeTailor uses a list of messages with three roles (system, assis-
tant, and user) and their corresponding content to construct the
prompt, following the OpenAI API reference1. The system message

1https://platform.openai.com/docs/api-reference/chat/create
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Figure 3: Pipeline for generating a personalized correct solution from an incorrect code in CodeTailor (Stage 1)

Figure 4: The main prompt template used in CodeTailor

includes the problem description, the detected control flow state-
ments in the student’s incorrect code (e.g., if-else, for-range),
a sample student solution for this problem, and unit test cases. Then,
CodeTailor applies a few-shot prompting approach, where the first
user-assistant message pair is used to provide an input-output ex-
ample of the desired model behavior. For example, when requesting
a corrected solution, the first user message (example user) includes
an incorrect code example from a previous student, and the assis-
tant message (example assistant) provides a validated personalized
corrected solution written by an expert. In the second user mes-
sage, CodeTailor provides the actual student’s incorrect code and
asks for a corrected solution for this code from the LLM. The main
prompt structure of the first attempt is shown in Fig. 4. If the initial
LLM-generated code does not meet CodeTailor’s evaluation criteria
(for correctness and closeness), two more requests will be sent to
the LLM with an updated prompt. The prompt is updated by adding
an attachment to the system message that includes the reason for
the failure and the LLM-generated code from the previous attempt,
as shown in Fig. 3-3.3.
4.1.3 Preprocessing and automatic evaluation of the LLM response.
After getting the LLM response, CodeTailor pre-processes it by only
keeping the LLM-generated code (Fig. 3-2). Next, it performs an
automatic evaluation of the LLM-generated code in two ways (Fig.
3-3): (1) correctness: the code must pass all the unit tests integrated
in CodeTailor (Fig. 3-3.1); (2) closeness: the code must be closer to
the student’s incorrect code than a most common prior solution

personalized with the student’s current variable names (low-level
personalization) (Fig. 3-3.2).

The most common student solution is extracted from previous
student-written code for the same question. We clustered those
correct solutions by comparing the edit distances based on their Ab-
stract Syntax Tree (AST) structure [50] and selected one representa-
tive solution from the largest cluster. The low-level personalization
focuses on matching the variable names used in the common solu-
tion with those in the student’s incorrect solution input. It parses
the student’s incorrect code using regular expressions to extract
variable names declared by assignment (e.g., var = ...) and im-
plicit declarations (e.g., for var in ... or while var ...). It then
adjusts the variable names in the solution to match the student’s
code (Fig. 3-3.2-Green).

In determining how close two code pieces are, standard methods
like Abstract Syntax Tree (AST) edit distance [27] may be ineffective
here since student-written mistakes often have bugs that cannot be
processed with standard similarity methods. Also, converting the
code into a vector using a pre-trained model, like CodeBERT [17] or
OpenAI embeddings, can be time-consuming. Therefore, CodeTailor
compared two Python code fragments by first tokenizing the code,
and then calculating the similarity using the ratio between their
respective token sequences [1]. It calculates the similarity between
two sequences as a float in the range of 0 to 1. A value of 0 indicates
no similarity, while 1 indicates that the two code pieces are identical.

4.2 Stage 2: Create a personalized Parsons
puzzle based on the personalized solution

CodeTailor determines the type of Parsons puzzle to create and
the corresponding block types based on three factors: overall code
similarity, code similarity at the line level, and the number of cor-
rected lines (the erroneous student code line repaired in the Stage
1 solution). CodeTailor first conducts a line-based comparison be-
tween the student’s incorrect code and the personalized solution
from Stage 1. Since a Parsons puzzle typically breaks code into
blocks based on code lines, this comparison method allows us to
prepare the fragments easily. If there are no identical code lines or
the overall code similarity is low, a fully movable Parsons puzzle is
provided (Fig. 2A-P1). If the solution contains identical code lines
to the student’s incorrect code, a partially movable Parsons puzzle
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is provided, and the student’s correctly written code is pre-placed
in the solution area and made static (Fig. 2B-P3). A threshold of 0.3
was used to indicate sufficient overall code similarity, which was
determined through system evaluation and pilot user testing.

When building paired distractor sets, if there are more than three
corrected lines, CodeTailor pairs each corrected line with a highly
similar student’s incorrect line as the distractor (e.g., above 0.7 in
CodeTailor) (Fig. 2B-P2). Each incorrect line can only be used as
a distractor once. If the corrected lines are not sufficiently similar
to any of the student’s incorrect lines, they will not have paired
distractors. To ensure that students with limited blocks to move
have an equitable learning opportunity (Fig. 2C), if the students
have less than three corrected lines, CodeTailor first still matches
these corrected lines with the students’ incorrect lines to find po-
tential distractors. However, if those are not available, CodeTailor
converts lines with control flow keywords and the longest lines
into distractor candidates. Then, CodeTailor generates the needed
number of distractor blocks from these candidate lines using the
LLM (Fig. 2C-P4). Once the type of Parsons puzzle is decided and
the corresponding blocks are created, the interactive personalized
Parsons puzzle is then displayed to students (Fig. 1, right).

5 TECHNICAL EVALUATION: CODETAILOR’S
MATERIAL QUALITY

As described in Section 2, a high-quality personalized Parsons puz-
zle should have a correct solution. This solution should also closely
align with the student’s existing code, as opposed to a most com-
mon solution. Also, by personalizing it at the block setup level, the
puzzle should be more concise to solve than a fully movable one.
We conducted an evaluation using incorrect code data from past
students to assess the material quality produced by CodeTailor from
these three perspectives.

5.1 Evaluation Data Preparation
To ensure data validity, we obtained authentic incorrect student
code from an intermediate programming course in Python at a
public research university in the northern US. We had IRB (Institu-
tional Review Board) permission to analyze students’ anonymous
code. We filtered the write-code problems by topic, difficulty level,
diversity of correct and incorrect code clusters, and common er-
ror types in the buggy submissions. After filtering, we selected 10
programming problems that covered various programming topics
with different difficulty levels, solution strategies, and common
error types. We randomly sampled 50 incorrect code submissions
from each of the 10 problems, leading to 500 incorrect code inputs.
To account for variation at the student level, each sampled code
submission came from a unique student. Based on these 500 inputs,
we obtained 500 personalized solutions Stage 1 (Section 4.1) and
puzzles from Stage 2 (Section 4.2) for evaluation.

5.2 Evaluation Results
5.2.1 CodeTailor can generate a correct solution from a student’s
incorrect code. The average accuracy rate of the LLM-generated
code for all incorrect student code inputs across questions was
0.98 (SD = 0.13). When the LLM-generated code contained errors,

CodeTailor used a low-level personalized representative most com-
mon solution, as mentioned in Section 4.1.3. Therefore, the final
CodeTailor-generated solutions were always correct.
5.2.2 CodeTailor can generate a correct solution closer to a student’s
incorrect code than a common student solution. To evaluate the per-
sonalization of the CodeTailor-generated code solution, this work
used a representative most common student code solution as the
baseline [24]. Then, the similarity between the baseline solution
and the student’s incorrect code was calculated (incorrect-baseline),
as well as between the CodeTailor-generated personalized solu-
tion and the student’s incorrect code (incorrect-personalized), using
the similarity measurement mentioned in Section 4.1. After ob-
taining the two similarities, a Wilcoxon signed-rank test 2 was
conducted, as the normality assumption was violated. We observed
a significant difference between incorrect-personalized similarity
and incorrect-baseline similarity: the incorrect-personalized simi-
larity, M (SD) = 0.6 (0.2), Median = 0.7, is significantly higher than
the incorrect-baseline similarity, M (SD) = 0.5 (0.1), Median = 0.5,
across student incorrect code inputs,W = 369.0, p < .001, CLES =
0.75. This indicates that CodeTailor can generate a correct solution
that is more similar to the student’s existing incorrect code than a
common student solution.
5.2.3 CodeTailor can offer a more concise Parsons puzzle than a
fully movable Parsons puzzle. To evaluate the conciseness of the
CodeTailor Parsons puzzles, the baseline was set as a fully movable
Parsons puzzle with only normal movable blocks. Both puzzles were
generated based on the Stage 1 solution and automatically chunked
into blocks according to the indentation levels. We compared the
number of movable blocks (including all the normal movable blocks
and distractor blocks) for the two types of puzzles. We conducted a
Wilcoxon signed-rank test and observed significant differences in
the number of movable blocks between CodeTailor Parsons puzzles
and fully movable Parsons puzzles across all the code inputs. Specif-
ically, even after adding distractor blocks, the CodeTailor Parsons
puzzles, M (SD) = 6.3 (2.6), Median = 6.0, had significantly fewer
movable blocks compared to the fully movable Parsons puzzles,
M (SD) = 8.1 (3.0), Median = 8.0, W = 13587.0, p < .001, CLES =
0.33, across student incorrect code inputs. By significantly reducing
the number of movable blocks to consider, CodeTailor can offer a
more concise Parsons puzzle to solve compared to a fully movable
Parsons puzzle created from the same code solution.

6 USER STUDY
Our technical evaluation found that CodeTailor can produce high-
quality personalized Parsons puzzles. However, it is also important
to understand if students perceive CodeTailor as engaging and ben-
eficial for learning. We conducted a within-subjects user study with
18 students with IRB approval. This study included problems that
used two different types of support to help students who struggled
while programming: 1) a direct AI-generated code solution that the
students could just copy to the programming area; and 2) a person-
alized Parsons puzzle that students had to solve before copying the
solution. The research questions were:
• RQ1: Which type of support do students find more engaging?

2https://pingouin-stats.org/build/html/index.html
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• RQ2: How do students’ practice performance, posttest perfor-
mance, and application of supported elements in the posttest
differ with two types of programming support?

• RQ3: Do students prefer CodeTailor or an AI-generated code
solution to support their programming learning? Why?

6.1 Method
In this within-subjects study, we asked students to practice by
solving four Python programming questions: two on lists and two
on dictionaries. Students got the same support for the two practice
questions on the same topic. Then, we asked them to complete two
posttest programming problems, one for each topic, independently.

6.1.1 Recruitment. CodeTailor targets novice students with limited
Python programming skills. We sent out the recruitment announce-
ment to both undergraduate and graduate students at the same
university. During the screening, potential participants reported
their prior programming experience, along with the number and
content of Python courses they’ve taken. Qualified participants had
not taken Python courses beyond the introductory level and had
no additional Python experience beyond course-related activities
in the past six months. The observations were conducted remotely
through Zoom, with each session lasting approximately 75 minutes.
We recorded their programming sessions, survey responses, and
replies to the follow-up interview. Each participant received a $30 -
$40 USD Gift Card after the study, the amount depending on the
actual duration. Eighteen qualified participants completed the study
following the instructions and were recorded.

6.1.2 The Baseline Support. One goal was to understand if Code-
Tailor could provide more engaging and educational scaffolding
compared to receiving a direct AI-generated solution, the output
most AI code-generation tools produce. Therefore, when the stu-
dent clicked the "Help" button, the baseline support popped up a
solution that was generated by the same process in Section 4.1.
6.1.3 Procedure. Participants were randomly assigned an ID based
on their study date. Each participant was required to practice by
finishing four programming problems with one of the two types of
support (CodeTailor or a direct AI-generated code solution). The
odd-numbered groups received two types of support in the se-
quence presented in Version A, while the even-numbered groups
received two types in the sequence presented in Version B (Fig. 5).
Participants only received one type of support for the two practice
questions on the same topic. This allows us to compare their prac-
tice, posttest performance, and application of supported elements
in the posttest by support type.

Figure 5: Two practice versions: In Version A, students do two
list exercises with personalized Parsons puzzles (CodeTailor)
and two dictionary exercises with just the AI-generated code
solutions. Version B has the reverse setting.

The think-aloud study started after checking ages and obtaining
verbal consent to record. To further ensure that participants’ Python

level was within our study scope, we gave them a three-minute
timed skill assessment about Python strings. Students who did not
finish this assessment within the time limit moved on to the rest of
the study. We provided a 15-minute introduction to the two types
of support in the study. Then, to ensure enough practice with the
interface, we gave an interactive example for each support type.
During practice, participants solved four programming problems
and rated their engagement with the two types of support. They
answered a survey question, "I feel engaged when using the above
’Help’", on a 5-point Likert scale (1-strongly disagree to 5-strongly
agree). After the practice, participants were asked to complete a
posttest with two five-minute timed programming questions (one
for each topic). No support was provided during the posttest. This
allowed us to evaluate students’ reapplication of the supported
practice elements from the two types of support in the posttest re-
sponses. The study ended with a reflective interview comparing the
two types of support and asking for suggestions for improvements.

6.1.4 Materials. Four programming problems were provided as
practice questions: two questions about lists and two about dictio-
naries. Past student scores indicated that these practice questions
have equal difficulty levels. The posttest included two program-
ming problems that were at the near to middle transfer level for
the corresponding practice questions [4, 40]. Each posttest problem
consisted of the same key elements that aligned with the practice
questions on the same topic in the study.

6.1.5 Data Analysis. For RQ1, students’ engagement for each sup-
port type was calculated as their average self-reported engagement
score from the two practice questions with that support. For RQ2,
we first calculated the students’ practice and posttest performance
in each support condition (CodeTailor or baseline) based on the
percentage of unit tests passed. For each student, this resulted in
a maximum of 20 points for practice and 10 for posttest in each
condition. Then, to understand how students retained and applied
elements from the practice support to the posttest, we defined a
new metric called scaffolding apply rate. Since the posttest question
shares the same key elements as the practice questions under the
same topic, two researchers iteratively developed a key element
grading scheme. Each posttest question included five unique key
elements corresponding with the practice questions on the same
topic. After that, one researcher manually graded student practice
and posttest based on this scheme. Example key elements include
"Initialize & return a dictionary", "Create a valid loop to loop through
the tuples", and "Check whether a key is already in a dictionary".

Scaffolding apply rate =
Number of scaffolded elements applied
Total number of scaffolded elements

This metric separates students’ level of independent practice from
the supported practice. The number of scaffolded elements applied
refers to cases where a student was initially unable to independently
complete a key element during practice before using the support,
but did so after using the practice support, and subsequently im-
plemented it independently in the posttest. The total number of
scaffolded elements refers to all the key elements with which stu-
dents initially struggled but achieved after using the support during
practice. The value of the scaffolding apply rate is from 0 to 1, where
zero means the student was unable to apply any elements they got
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Table 1: Descriptive statistics on RQ1 and RQ2 metrics, re-
ported in Mean (SD), Median format

CodeTailor Baseline
Perceived Support Engagement 4.5 (0.5), 4.5 3.0 (0.9), 3.0
Practice Performance 16.9 (6.1), 20.0 20.0 (0.0), 20.0
Posttest Performance 1.4 (3.6), 0 0.8 (2.1), 0
Scaffolding Apply Rate 0.3 (0.4), 0.2 0.1 (0.3), 0

from the practice support when answering the posttest. This sug-
gests the student did not retain anything from using the support
during practice. One means that the student was able to apply all
the elements obtained from the practice support in the posttest.

Out of the 18 participants, 14 (77.8%) used the programming sup-
port for all four practice problems. Therefore, to balance the data,
we only included these 14 participants to answer RQ1 and RQ2.
If the data was not normally distributed, we used the Wilcoxon
signed-ranks test instead of the paired t-test. Seventeen participants
(94.4%) reported having sufficient experience with both types of
support, so we included them in RQ3. One participant was excluded
from the analysis due to a self-reported lack of experience with
supports, leading to uncertainty in preference. To further unpack
how CodeTailor contributed to the quantitative results, we investi-
gated learners’ think-aloud recordings and interviews. This allowed
us to gain a better understanding of students’ interactions with
the programming support during practice. We interpreted the tran-
scripts and identified themes based on participants’ responses and
observations of their behaviors. When reporting the findings, we
used (explanation) to clarify missing information in quotes and
[behavior] to indicate student behaviors.

6.2 Results and Findings
6.2.1 RQ1: CodeTailor is perceived to provide more engaging support
than an AI-generated solution. We analyzed the students’ survey
responses about engagement, their verbal explanations of these
responses, and their corresponding behaviors. Students reported
feeling significantly more engaged when using CodeTailor to solve
the write-code problems, compared to receiving the baseline sup-
port, W = 3.0, p < .001, CLES = 0.89 (Table 1).

According to students, moving the blocks by themselves con-
tributed to this high level of engagement. Specifically, P16 explained
it as "I felt really engaged because the drag and drop was asking me
to do some stuff". In addition, a high level of engagement also re-
sulted from being prompted to think through the question. As P18
explained, "because it makes me kind of think through the solution
rather than just copy and paste it." Furthermore, P7 reported, "I could
visualize where all the different parts of the problem are going to go,
and it made me think more about the problem." Conversely, partici-
pants reported feeling disengaged when using the baseline support
of just receiving an AI-generated solution. For example, P1 reported,
"I didn’t feel like I did anything, so it kind of feels like cheating." P8
even directly expressed the desire to receive more engaging help,
as ""there could be something like more engaging than just reading
the code."

6.2.2 RQ2: Students applied more supported elements on the posttest
when using CodeTailor as practice support than when receiving an
AI-generated solution. All the students got a full score (20 of 20) in

the practice when using the baseline support. This was expected,
as they could just copy the correct solution and submit it. Seventy
percent (10 of 14) of the students got full marks for the practice
when using CodeTailor. Only one student (P3) gave up completing
the personalized Parsons puzzles in CodeTailor and got zero in the
corresponding write-code practice. Students achieved an equal level
of posttest score when using CodeTailor and the baseline support,
W = 2.0, p = .789, CLES = 0.51 (Table 1).

We observed significant differences between CodeTailor and the
baseline support in terms of students’ ability to apply supported
elements from the scaffolded practice to the posttest (scaffolding
apply rate),W = 3.0, p = .041, CLES = 0.66 (Table 1). In other words,
with CodeTailor, students applied more elements from the support
during the posttest thanwhen they simply received an AI-generated
code solution. For example, one participant struggled with dictio-
nary keys during practice. After successfully solving two practice
problems with CodeTailor’s support, she was then able to apply this
to the posttest. She said during the posttest that, "this is something
like the quantity previously (referring to a corresponding practice
question)". Similarly, another participant incorrectly compared the
list length during practice, and after seeing her own buggy code
that was paired with a correct code block in CodeTailor, she pointed
to the correct block and said, "I’m trying to remember if that’s the
way you do length. I think this might be the right one." She then
answered this practice problem correctly and reapplied this key
element in the posttest.
6.2.3 RQ3: Most students prefer to use CodeTailor to support learn-
ing than just receiving an AI-generated solution. We asked the par-
ticipants to compare their experiences with CodeTailor versus the
direct AI-generated solution and their preferences. In general, 15
(88%) out of the 17 students preferred to use CodeTailor for learning.
Below, we will further explore the reasons why CodeTailor was
preferred to support learning.

CodeTailor provided a hands-on and engaging way for
students to co-create a correct solution with appropriate ef-
fort. Most participants preferred CodeTailor because it is more
interactive and allows them to invest the right amount of effort
to achieve a solution. CodeTailor has already reduced the solution
space and pre-placed their correctly written lines, but still gives
learners enough freedom to explore. For example, P7 expressed it
as, "It not exactly like just giving you the answer key. It’s still having
you do a bit of work on your part to figure out what you should be
doing correctly. And I think that’s helpful for learning what exactly
to do." P5 also appreciated the timely feedback in CodeTailor dur-
ing the exploration, "I like the mixed-up one (CodeTailor) because it
allows for me to engage and make my own personal guesses, but it
also provides feedback." P12 specifically appreciated the "Combine
Block" feature when he was unable to identify the issue with his
puzzle after 15 failed attempts. He utilized the "Combine Block" to
obtain the correct solution less frustratingly.

CodeTailor encouraged students to think about the con-
struction of the solution. Because CodeTailor includes a correct
answer in the mixed-up order, students are more encouraged to
think when ordering the blocks. Their main focus shifted to under-
standing the program flow. Participants pointed out that CodeTailor
helps them think better about this process compared to just show-
ing them a direct code solution. For instance, P8 highlighted the
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learning of block relationships as "it helps you visualize the relation-
ships between different blocks of code more easily". In addition, P8
also mentioned the contribution of distractors to support thinking
as "it helps for like narrowing down what you should do and helps
you compare different potential ways to solve it.". P11 described it as
"(CodeTailor) helps me to better think through ... it provided context
clues and helped me to learn a little bit better."

CodeTailor fostered continuity in learning by building on
past efforts without revealing the final solution. CodeTailor
provides a personalized mixed-up puzzle by continuing from where
the students left off. It applies students’ strategies and variables in
the blocks and also pre-places students’ correctly written lines. As
P10 mentioned, "I think it helps you work through things the way
that your brain originally thinks through them." Also, CodeTailor
allows students to correct one piece of error without revealing the
entire final solution. This is particularly helpful when students get
stuck on a specific part but still want to complete the rest on their
own. As P16 pointed out, "If I would have needed that (the help)
earlier in the process, I think I would have been frustrated if the whole
solution was already there for me."

Personalized distractor blocks helped students diagnose
errors and promoted metacognitive reflection. CodeTailor cre-
ates distractors from the student’s incorrect code, which allows
for more targeted debugging. P9 emphasized its value in locating
errors when debugging, saying "Use (of) my wrong line of code to
generate this multiple choice (paired distractor set) is helpful in terms
of helping me to identify or locate where the bug is." Furthermore,
personalized distractors help students reflect on their thought pro-
cesses, which promotes self-regulation. As P6 stated, "it allowed me
to see basically what my thought process was, and it made me think
about and compare the differences between the two blocks."

CodeTailor boosted students’ confidence during problem-
solving. Since CodeTailor generates the correct solution based on
the student’s existing code, it boosts learners’ confidence during
practice. As P10 said, "I think it definitely increases your confidence,
especially when you’re on the right track." Seeing CodeTailor cor-
rectly pre-place correct lines also inspired the students. For instance,
when P17 saw that CodeTailor indicated that two lines were correct,
she was happy and said "I basically sort of did that piece right, which
actually feels great to me." P11 shared a similar feeling, "It kind of
helped me to confirm the correct things that I did."

Although learners generally found CodeTailor easy to use and
helpful, some reported challenges.

CodeTailor lacks sufficient explanation to facilitate un-
derstanding of difficult details. Thanks to the arranging block
activity in CodeTailor, students can understand the overall structure
and main solution logic thoroughly. However, some participants
had difficulty comprehending the details within individual blocks,
which prevented them from successfully transferring the correct
code to the posttest. For example, P17 completed the personalized
Parsons puzzle in CodeTailor but had difficulty understanding some
parts of the for loop. As a result, when she finished the posttest,
she could not reuse the component from CodeTailor.

CodeTailor occasionally generated complicated solutions
that exceeded learners’ current knowledge. One student (P11)
faced a situation when CodeTailor produced a complex solution that

surpassed P11’s current knowledge level. Specifically, CodeTailor
generated a one-line block that was too difficult for novices to
digest. While the puzzle seems easy to solve with only four blocks
in total, P11 had difficulty understanding it (Fig. 6).

Figure 6: A complex shorthand one-line block in CodeTailor.
Getting a direct solution (the baseline) is still preferred for

quick problem-solving. Two students (P3&P9, 12%) favored the
baseline support of just receiving an AI-generated code solution. P9
liked it because of the quick error correction and side-by-side code
comparison. P3 preferred receiving the AI-generated code, as P3
felt discouraged after multiple unsuccessful attempts to solve the
personalized Parsons puzzle. In addition, while most participants
mentioned CodeTailor’s learning benefits, some of them (P1, P2,
P15, and P17) also said that they might prefer getting a personalized
correct solution directly if they just wanted to finish the problem
quickly. For example, P1 expressed it as "I personally like the drag-
and-drop thing (CodeTailor) just because it was helping me learn.
But if I wanted something really fast, then I would do the complete
solution (baseline help)." Similarly, P15 stated her preference would
vary by situation, explaining, "I think if I just want a quick way to
solve that question, I’ll go to the regular one (baseline)."

7 DISCUSSION AND FUTUREWORK
In this section, we discuss how CodeTailor addressed the rising
concerns when applying generative AI in educational contexts,
future steps to tackle challenges in CodeTailor, and implications
for broader AI-based support design.

7.1 Address the concerns of LLMs in education
Two growing concerns about using GenAI in education are (1)
students using AI to generate answers and finish the activity with-
out learning (over-reliance), and (2) AI mistakes that can mislead
novices [30, 35]. Motivated by these concerns, CodeTailor harnesses
LLMs to generate correct, engaging, and personalized scaffolding
to support development of basic programming skills at scale.

CodeTailor tries to address the concern of over-reliance through
several aspects. First, it provides a middle-stage product (a person-
alized puzzle) as scaffolding, which still requires students to put
in cognitive effort to arrive at a final solution. This makes the AI
output indirect and allows students to apply existing knowledge
[11] and prevents them from being passively engaged or even dis-
engaged by only reading the materials [9, 58]. In addition, deeper
cognitive engagement strategies could be triggered in scenarios B
and C through the selected-response activity with distractor blocks
(Fig. 2). Students can monitor and reflect on their understanding by
comparing distractor blocks based on their errors with the correct
ones. Second, the block-setting customization and the "combine
blocks" feature allow the system to support a wide range of abilities.
This could prevent students from feeling challenged by CodeTailor’s
task, which may lead them to switch to using AI tools to generate
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a direct solution. In addition, by chunking the solution into sev-
eral blocks, CodeTailor prevents mental overload from reading a
complete solution all at once.

Regarding the concern for AI models to be incorrect, CodeTailor
has created an automated evaluation pipeline to check the raw LLM
output, with guardrails in place to make sure the materials shown
to students are correct [29]. As code solutions can be evaluated
automatically through unit test cases, our pipeline is capable of
being scaled to large classrooms and other scenarios. However,
future research should investigate how to develop a reliable au-
tomatic evaluation pipeline for more open-ended LLM-generated
educational materials, such as explanations.
7.2 Enhance the instructional effectiveness
In the student evaluation, we found some students struggled to
understand the code blocks. As reported in Kuttal et al. [34] and
Simon and Snowdon [55], students are unable to understand the
purpose of code without a proper explanation. Since learners tend
to read through the Parsons solution to understand each block after
solving the problem, one potential way to enhance the instructional
power is by adding explanations to each completed block or be-
tween blocks. Future work is needed to investigate what types of
explanations are useful in Parsons puzzles as support [10].

Furthermore, although we prompted the LLM with an example
novice solution, CodeTailor would occasionally generate an overly
complex solution. It could be because the LLM was attempting to
meet another requirement, like aligning with the problem-solving
strategy. Future work can explore automatic detection of over-
complicated code in the pipeline, such as using keyword selection
based on code styles [13, 52]. In addition, not all the students were
able to complete the Parsons puzzle in CodeTailor. Future work
should consider providing additional support in these scenarios.
Adjusting the difficulty levels of the puzzles based on the student’s
current progress could also address this.

Thirdly, in CodeTailor, students have to wait an average of 10
seconds for the real-time LLM-based help to load due to potential
multiple requests being sent to the LLM after failed code evaluation
(Fig. 3-3.3). While some students found it relatively fast, others
considered it to be slow, but were not bothered because they could
think while waiting. Only one mentioned that the waiting time was
"noticeably long". However, students reported that the help loading
page in CodeTailor with an active spin and an encouraging sentence
made the waiting time less painful. Future work should investigate
better ways to reduce the delay and optimize the waiting processes
to improve the learning experience.
7.3 Potentials beyond programming support
Support higher-order computational skills in the AI era.With
the adoption of AI programming assistants, recent work claimed
that the focus for programming courses may shift from writing
correct code to developing algorithmic thinking [35, 44]. By asking
students to select and place code in order, CodeTailor offers a fo-
cused learning opportunity that encourages algorithmic thinking
because students have to look at the structure and dependencies
within the code [60, 62]. In this process, students also practice their
code comprehension skills, as they must read and understand new
code in the corrected solution while rearranging the code blocks.
An algorithm-to-code activity could further enhance CodeTailor’s

ability to practice algorithmic thinking. Specifically, students could
write the algorithm (processing steps of the program) in natural
language. Then, if the student’s algorithm was correct, CodeTai-
lor could generate a personalized Parsons puzzle based on their
algorithm. This activity would leverage AI’s strength in code gen-
eration but train students’ skills in high-level program design and
problem decomposition [49]. By focusing on the broader aspects of
program structure and logic, this activity could prepare students
for the complexities of real-world computational scenarios while
still harnessing the power of generative AI.

LLM-based sequencing activities in other educational con-
texts. The concept of sequencing pieces of a solution can be applied
to other learning contexts, such as reading, foreign language, and
math education [15]. For example, in math learning, sequencing
items are commonly required for proofs [45]. In language learn-
ing, activities such as sequencing stories, where students rearrange
mixed-up paragraphs or sentences from a story, can help them
understand the sequential flow of a narrative. This combination of
story and sequencing activities can also be applied to teach K-12
students AI literacy skills, such as plagiarism with generative AI
tools in different learning contexts. CodeTailor can be adapted to
support these activities by simply changing the content.

8 LIMITATIONS
This work has several limitations. (1) The user study is a small-scale
think-aloud study; it was not conducted in a real educational setting
where students might behave differently with different preferences.
(2) The effect of CodeTailor on students’ long-term knowledge reten-
tion and far-transfer learning is still unclear. (3) Limited feedback
on the quality of LLM-produced Parsons distractors due to few
falling into this personalization scenario. (4) We only compared
CodeTailor with receiving a direct AI-generated code solution; fu-
ture work could explore its effectiveness in comparison to other
formats or when combined with other support features. (5) Code-
Tailor integrates LLM in real-time, hence the costs could be high
for large classroom settings; future work should explore alternative
methods to reduce costs.

9 CONCLUSION
We introduced CodeTailor, a novel system that delivers LLM-powered
personalized Parsons puzzles to support students who struggle
while programming. CodeTailor can tailor the code solution pro-
vided in the puzzle blocks to match the student’s latest code, pre-
place the correct written lines in the solution area, reuse the erro-
neous lines as distractor blocks, and combine the movable blocks on
request. Technical evaluation showed CodeTailor could reliably de-
liver high-quality (correct, personalized, and concise) Parsons puz-
zles. Also, students found CodeTailor as more engaging and could
apply significantly more supported elements from the scaffolded
practice to the posttest after using CodeTailor than just getting the
correct solution. Overall, most students preferred CodeTailor for
learning versus just receiving an AI-generated code solution.
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