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ABSTRACT 
When teams of data scientists collaborate on computational 
notebooks, their discussions often contain valuable insight into 
their design decisions. These discussions not only explain anal-
ysis in the current notebook but also alternative paths, which 
are often poorly documented. However, these discussions are 
disconnected from the notebooks for which they could provide 
valuable context. We propose Callisto, an extension to com-
putational notebooks that captures and stores contextual links 
between discussion messages and notebook elements with 
minimal effort from users. Callisto allows notebook readers to 
better understand the current notebook content and the overall 
problem-solving process that led to it, by making it possible 
to browse the discussions and code history relevant to any part 
of the notebook. This is particularly helpful for onboarding 
new notebook collaborators to avoid misinterpretations and 
duplicated work, as we found in a two-stage evaluation with 
32 data science students. 
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INTRODUCTION 
Data scientists benefit from collaborations to leverage exper-
tise from each other and to improve the efficiency of their work. 
Computational notebooks are powerful tools for collaborative 
data science because they allow data scientists to document 
and replicate the exploration process through the creation of 
computational narratives—documents that combine code, ex-
planatory text, and intermediate output. New tools like Google 
Colab [4] and Deepnote [3] enable data science teams to work 
in the same notebook in real time, creating new possibilities 
for collaboration. 
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Figure 1. Callisto captures and stores contextual links between discus-
sion messages and notebook elements with minimal effort from users. 

Effective communication between data science team members 
is critical for productive teamwork. Collaborators need to 
understand what their teammates have done so far, what they 
plan to do, what they have given up, and how their work fits 
in with the team’s overall goals. Team members can improve 
their shared understanding by (a) writing clearer code, (b) doc-
umenting their work, and (c) discussing as a team. Improving 
code clarity (a) and writing clear documentation (b) are often 
impractical for data scientists, who frequently write makeshift 
code to experiment, explore, and test hypotheses [42, 27, 22, 
39, 40]. 

Data science teams often have rich team discussions (c) 
through communication channels such as e-mail, instant mes-
senger, and face-to-face meetings [42, 27]. These discus-
sions are often crucial for collaborators to work together ef-
fectively, as they can provide valuable context about notebook 
authors’ goals and design rationales. However, these discus-
sions are disconnected from the computational notebooks be-
ing discussed—they typically occur in channels outside of the 
notebook and references to notebook content are implicit (e.g., 
“there’s a bug in the second cell” or using a notebook screen-
shot). This means that team members typically need to have a 
shared context to make sense of the discussion (i.e., they need 
to understand what “the second cell” means or which part of 
the notebook a screenshot refers to). This can be particularly 
challenging as the notebook evolves (for example, if the “sec-
ond cell” is moved after it is referred to). As a result, although 
discussions are helpful for collaborators who are actively in-
volved in it, they can be difficult to understand for new team 
members or anyone catching up on the discussion [44] who 
does not have this shared context. 

In this paper, we propose to improve collaborative data sci-
ence by connecting discussions with computational notebooks. 
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We first describe the results of a formative study where we 
found that chat messages can be invaluable to understanding 
collaborative computational notebooks but are difficult to com-
prehend afterwards. We then introduce Callisto, a plugin for 
Jupyter [19]. We designed Callisto with the insight that dis-
cussions are an integral part of collaborative computational 
notebooks and connecting discussions with notebook content 
can make the notebook easier to understand for its authors and 
for subsequent readers. Callisto augments Jupyter with several 
collaborative features—most notably, the ability to explicitly 
reference notebook elements in chat messages. These con-
nections make it easier to understand the context of a given 
message and to find discussions that are relevant to a specific 
notebook element. 

We conducted a two-stage evaluation of Callisto. In the first 
stage, we evaluated how Callisto supports real-time team com-
munication and found that it can reduce communication costs. 
In the second stage, we evaluated whether Callisto can help 
data scientists better understand a discussion that has already 
taken place. We found that Callisto can ease user onboarding 
to new notebooks by helping them understand the design ra-
tionales of its authors. As one of our participants put it, “by 
reading the code, I know what they were doing. But with the 
chat messages, I can know what they were thinking.” 

This paper contributes: 

• empirical evidence of the challenges that data scientists 
encounter when catching up with an ongoing group project, 

• the design of Callisto with a set of features to make chat 
messages more useful for understanding the past exploration 
process in the notebook, 

• empirical insights into how users engage with and perceive 
these features, and 

• evidence that creating mappings between messages, note-
book elements, and versions helps data scientists understand 
and follow up on the exploration pipeline. 

RELATED WORK 

Computational Notebooks 
Computational notebooks are widely used to create and share 
the exploration process for data science [36]. As a practice of 
exploratory programming, data science often involves writing 
code to actively experiment [22]. The design of computational 
notebooks makes it easy for data scientists to rapidly iterate 
on code chunks and inspect the intermediate results during 
the exploration process. Data scientists also benefit from com-
bining exploratory code with human-readable explanations to 
create computational narratives—a practice of literate pro-
gramming [26], and a medium for data science practitioners 
[23, 27, 32, 35, 24], scientific programmers [15, 37], and data 
science educators [29] to share and reproduce work with a low 
cost for setting up the environment. Recent groupware tools 
like Google Colab [4] and Deepnote [3] enable synchronous 
editing for data scientists to collaboratively author compu-
tational notebooks, which encourages more exploration and 
discussions over the shared context [42]. 

Although having a well-documented computational narrative 
offers many benefits, it is challenging for data scientists to 

maintain an updated explanation and a clean notebook during 
the exploration process [39]. When the problem gets complex, 
data scientists tend to write lower quality code, leave documen-
tation incomplete, change the execution order, or accidentally 
overwrite important analyses while iterating on different ideas 
[21, 18]. These tensions can be amplified in a collaborative 
setting where it is important to keep a shared understanding of 
past design decisions across team members [42, 27, 22]. 

Prior studies have explored ways to reduce the messiness of 
computational notebooks. These include introducing local 
versioning to better document past analysis [21], using code-
gathering techniques to curate and reorganize code chunks 
[18], and folding code chunks with annotations [38]. These 
tools are useful for improving the structure of the notebook, but 
they do not directly help with documenting design decisions; 
it remains a challenge to help explain the analysis process. 
The interpretation and reasoning process of the intermediate 
results plays an important role in exploration. By looking at 
the same output, data scientists may come up with different 
understandings, which lead to different actions they may take 
next. In a collaborative setting, data scientists may external-
ize such explanations through the discussion with each other. 
Callisto aims to curate these valuable clues to help notebook 
readers better understand the exploration process. 

Linking Code and Discussion 
Callisto extends the idea of post-literate programming, where 
discussions are gathered and incorporated into the code [34]. 
For instance, Github allows users to create an “issue” to start 
a discussion and link the issue to a commit or pull request 
(submission of code change) [2]; Clerkbot allows software 
developers to mark and summarize their chat messages through 
a chatbot and link it to their code repository [34]. It is difficult 
to directly apply the idea to computational notebooks. First, 
data scientists rarely use conventional version control tools 
like Git because they are not convenient for versioning and 
tracking rapid explorations in computational notebooks [20]. 
Second, it relies fully on the users to initiate the linking, which 
may hinder exploration and communication in collaborative 
data science. Data scientists need a lighter way to link the 
related discussion to the notebook content. 

On the other hand, there are many communication tools that 
tie the code content in the discussion to build common ground 
[13, 14] in collaborative programming tasks such as tutoring, 
help-seeking, and pair programming. For instance, sharing 
gaze information among programmers can help communicate 
locations in code [12]; online Integrated Development Environ-
ments (IDEs) like JSFiddle [5] and Stack Snippets [17] allow 
users to create a minimal, complete, and verifiable example 
to directly illustrate the problem on forum posts; Codeon [8] 
enables remote helpers to point out locations in code using 
annotations; and chat.codes [33] introduces code pointers that 
create deictic references to regions of code. 

Creating Contextual References 
Creating contextual references to reduce communication costs 
has been explored in a variety of other contexts [45, 10, 11, 
16, 9]. Contextual references can be used to point to a specific 
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place in a shared context. For example, NB [45] supports con-
necting social conversations to a specific part of a document’s 
content and is particularly useful in the educational context 
when students want to start a discussion on lecture notes or 
textbooks. Contextual references can also be used to support 
the notion of time when the shared context is dynamic. For ex-
ample, ConceptScape [30] connects nodes in a learner-sourced 
concept map with timestamps in the educational video; and 
chat.codes [33] connects both the code location and the version 
history with chat logs. 

Inspired by chat.codes [33], Callisto connects chat messages 
with notebook content and tracks the timestamp, version his-
tory, and location of elements that are discussed. To capture 
the location of elements, Callisto extends the design of code 
pointers as one data source to collect deictic references be-
tween notebook and discussions. This approach captures ac-
curate contextual links in a convenient way, but still requires 
explicit effort from users. Unlike chat.codes, Callisto also 
collects users’ implicit interactions (e.g., cursor position) in 
the notebook to automatically create contextual links between 
code and discussion when the messages do not contain explicit 
pointers. Callisto enables two-way interaction between mes-
sages and notebook content, whereas chat.codes only supports 
navigating from messages to code. 

FORMATIVE STUDY 
To better understand how discussions can be useful for explain-
ing the data-exploration process, we analyzed chat messages 
collected from three data science group projects. In doing so, 
we aimed to investigate three questions: (1) Why do collabo-
rators send messages to one another? (2) How do messages 
connect with the evolving notebook? and (3) What aspects of 
the notebook do collaborators talk about? 

Method 
We recruited six data science students from data science spe-
cial interest groups in both university and online learning 
environments. We asked participants to work remotely in pairs 
on a beginner-level data science task* using a collaborative 
Jupyter editor for four hours. This collaborative Jupyter editor 
synchronizes edits between users and allows collaborators to 
see each other’s cursors. Pairs also worked in a shared runtime, 
meaning that code ran on a single interpreter, with outputs 
shared between collaborators. There were no other explicit 
communication mechanisms (chat, voice, etc.) enabled in the 
editor, and participants were given access to a third-party text 
chat (Slack) for communication. We collected chat messages, 
final notebooks, and screen recordings during the study. 

Data Analysis 
Our formative study uses a similar data analysis approach (in 
a different setting) to Yarman et al.’s work on cross-media 
referencing [43]. Two members of the research team used 
open coding to classify the collected data. We used the first 50 
messages to create an initial code list, using final notebooks 
and video recordings as secondary evidence to help recall 
messages’ context. After discussing and merging the code 
*https://kaggle.com/c/house-prices-advanced-regression-techniques 

list, the two members independently coded the same sample 
of 50 messages and achieved an agreement of κ = 0.40. We 
revised codes to reduce ambiguity and achieved an agreement 
of κ = 0.83 between raters after two rounds of iteration. 

Results 
In total, we analyzed 760 chat messages to better understand 
their purpose, their relationship to the evolving notebook, and 
the specific aspects of the notebook they mention. 

Purpose 
We found five broad purpose categories: reflection (244), plan-
ning (87), check-in (121), cooperation (67), and out-of-scope 
messages (244), as Table 1 shows. Messages could fit into 
multiple categories, such as planning and cooperation. Mes-
sages coded as reflection tended to expand on the reasoning 
behind past decisions, while planning messages discussed po-
tential features that had not yet been implemented. Check-in 
messages were updates between collaborators on what they 
had done, while cooperation messages generally discussed 
collaboration strategies. 

These four categories show that chat messages can help explain 
the data-exploration process, describe the purpose of the code, 
and provide a high-level interpretation of the results. Not 
surprisingly, however, we categorized an additional 30% of 
messages as out-of-scope, because they did not convey useful 
information for explaining the exploration process and instead 
contained duplicate information or socialization messages. 

Relevance 
Our analysis (shown in Table 2) revealed that the final note-
book is generally not reflective of the whole exploration pro-
cess. Data scientists often explored ideas in discussions that 
they later rejected and wrote no analysis for. Even if they did 
implement an analysis to explore an idea, the code was often 
modified or removed during a “cleanup” stage [23, 18]. As 
such, messages between collaborators can fill in missing de-
tails of the exploration process. We suggest that revealing this 
information to new collaborators (e.g. someone taking over a 
project or another data scientist helping with an analysis) may 
avoid duplication of work while simultaneously revealing hid-
den assumptions. However, given that the Jupyter Notebook’s 
current design does not have built-in collaboration features 
nor track edit histories (which can give context to discussions), 
it is difficult to use chat messages to understand a previous 
exploration process. 

Granularity 
We also investigated the granularity of the notebook elements 
collaborators referred to (Table 3), finding that 97 messages 
directly referred to a specific line of code. These messages 
were related to Application Programming Interface (API) us-
age, debugging, or sharing the current status. A further 119 
messages directly related to the output of a cell, including the 
data frame, visualizations, and statistical values. Finally, 206 
messages described high-level ideas implemented across one 
or multiple cells. 

Implications 
We derive three design implications from our findings: 
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Purpose Example n 

Reflecting “This plot confirms the correlation for sure.” 244 
Planning “Let’s throw away columns that have lots of missing values.” 87 
Check-in “Just did a square root.” 121 
Cooperation “Ok, while you fix the stuff, I’ll create one hot encoding for categorical [variables].” 67 
Out-of-scope “Oh no!!” 244 

Table 1. Purpose of sending a message: reflecting, planning, check-in, cooperation, and out-of-scope. 
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Relevance Example n 

Ideas that were only discussed but never implemented “Do you think we can just assign 1,2,3,4,5 to it and 29 
create one column instead?” (“No, I am afraid ...”) 

Ideas that had not yet been implemented when the message “How about we start with numerical columns?” 150 
was sent, but appeared in the notebook later 
Ideas that had been implemented in the notebook when the “Something went off. The MSE [mean square 72 
message was sent, but did not appear in the final notebook error] is huge.” 
Ideas that had been implemented when the message was “For the test data I did a fillna with 0.” 108 
sent and appeared in the final notebook 

Table 2. Relevance between messages, the notebook history, and the final notebook. 

Granularity Example n 

Directly referred to a specific line of code “I think LabelEconder is going to treat NA as a new encoding.” 97 
Directly referred to the output of a cell “I am not too convinced if our MSE values are good enough.” 119 
High-level ideas across multiple cells “I just converted the categorical [data] to numerical [data].” 206 

Table 3. Granularity: the level of detail of the referenced elements 

Chat messages are useful for explaining the exploration 
process. We were able to better understand the motivations 
for doing specific analyses, the purpose of the code written 
to run them, the interpretation of their results, and alternative 
analysis paths (tested or rejected without implementation). 
These details are often missing or poorly captured in traditional 
Jupyter Notebook artifacts. 

Chat messages are difficult to follow. Chat messages are 
long and tedious to read because of scattered insights, a large 
amount of out-of-scope information, and information that 
requires notebook context to understand (which is likely to 
change before being finalized, as Table 2 shows). This makes 
it difficult for newcomers to build on earlier work. 

Notebook elements are frequently referred to in chat mes-
sages. Notebook elements, such as fragments of code, output 
of executions, and cells containing a variety of statements, are 
frequently mentioned in chat messages. The lack of connec-
tion between these elements and discourse limits insight into 
decisions and results. 

DESIGN OF CALLISTO 
We designed Callisto to improve collaborative data science by 
better connecting discussions with notebook content. Callisto 
extends the Jupyter Notebook platform in several ways. First, 
it allows users to share notebooks, collaborate in real time, and 
discuss with collaborators. Second, it enables users to connect 
discussions with elements in the shared notebook, including 
code, output, individual cells, or edits. Third, it leverages 
these connections to make it easier to navigate discussions and 
notebook content—for example, to find discussions about a 

particular part of the notebook. We describe the design of each 
of these facets of Callisto in more detail below. 

Enabling Sharing and Real-Time Collaboration 
Although the creators of Jupyter recognized the importance of 
real-time collaboration, they left it as future work† [25]. Sev-
eral offshoots of the Jupyter project [4, 3] have incorporated 
collaborative features such as synchronized editing and shared 
cursors. Callisto starts by enabling notebook sharing and edit 
synchronization in Jupyter. We designed Callisto as a Jupyter 
plugin, rather than as a fork of the codebase, to allow users 
to easily share any standard Jupyter notebook and maintain 
compatibility with future versions of the Jupyter platform. 

Basic Collaboration Features 
The Callisto plugin augments the standard Jupyter User In-
terface (UI) with several widgets, as Figure 2 shows. First, 
Callisto adds a “share” button that generates a unique URL for 
collaborators to join the shared notebook session. A panel lists 
the collaborators that are connected to the notebook (Figure 
2.D). When collaborators join the notebook, their edits are 
synchronized in real time with other collaborators. They can 
also see every other user’s cursor location and selection (Fig-
ure 2.F) and navigate to any other user’s location by clicking 
on their name in the list of collaborators (Figure 2.D). 

Shared Runtime and Outputs 
One important difference between computational notebooks 
and standard code is that computational notebooks are divided 
into smaller cells that can be run individually. Cells run in a 
†At the time of writing, Jupyter does not support real-time collabora-
tion. 
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Current Notebook 5 minutes ago

3:31pmBob
Executed a modified cell

data.plot.scatter(x='GrLiv+

@@ -1,7 +1,7 @@

Alice 3:35pm
Executed a modified cell

data.plot.scatter(x='GrLiv+

@@ -1,7 +1,7 @@
# scatter plot grlivarea/s

Share

Alice 3:30pm
Executed a modified cell

data.plot.scatter(x='GrLiv+

@@ -1,7 +1,7 @@
# scatter plot grlivarea/s

Filter Bob Alice

Chat

Alice

What about these outliers? marker

3:30pm

Let me check their values.

3:31pmBob

They were both sold in 2008 

3:33pmBob

cell

Alice

Financial crash?

3:34pm

Write your message

searchIn [8]:

data.plot.scatter(x='GrLivArea', y='SalePrice');
# scatter plot grlivarea/saleprice AB

In [ ]:

Is there a linear relationship between GrLivArea and SalePrice?

House Price Prediction

In [ ]:

A

B

C D

F

H

G

E

I

J

Figure 2. Overview of Callisto: (A) The changelog panel shows users’ edit histories; (B) The collaborative notebook editor synchronizes edits, runtime 
variables, outputs, annotations (see G, H), and cursors (see F) among collaborators; (C) The filter button enables the filtering mode (see Figure 3); (D) 
The user panel lists collaborators that are connected to the notebook. Users can navigate to others’ cursor locations by clicking on their name; (E) The 
embedded synchronous chat pane creates connections between messages and notebook content. Messages mapped to the selected cell are highlighted in 
light green. Users can create explicit references by clicking the magic wand (see J) and then selecting the relevant part of the notebook—for example, 
to create an annotation reference (see I). 

common variable space, meaning that the ordering and timing 
of cell execution can (and typically does) influence execution 
outputs. This can be confusing for users, particularly in situ-
ations where one user’s output cannot be replicated by other 
users who have different runtime states. Thus, rather than 
giving users their own runtime, Callisto connects every collab-
orator to a single shared runtime. This means that the state of 
the program is shared—if the value of a variable is modified 
(by executing code that modifies its value), its value is updated 
for every collaborator. Cell outputs (the results of running a 
cell, which can be textual, graphical, or shared data frames) 
are also shared automatically, which gives all collaborators a 
shared point of reference. 

Synchronous Chat 
Jupyter does not have built-in messaging features, which 
means that data science teams typically communicate through 
external tools such as e-mail or Slack [42]. As we found in 
our formative study, these communications can be valuable 
for understanding the design behind a notebook, but there is a 
cost in switching between applications for writing and com-
municating. Thus, Callisto embeds a synchronous chat pane 
directly in the shared notebook (Figure 2.E). This built-in chat 
pane allows us to capture contextual information and create 
connections between messages and notebook content, which 
we will introduce later. 

Edit and Version History 
Prior work has found that shared editors and cursors are helpful 
for collaborators but are not enough to build awareness of what 

they have worked on [42]. This is partly because they only 
allow users to see what collaborators are working on at that 
specific moment. Building awareness of collaborators’ activity 
instead requires a more complete view of their actions. To 
provide this, Callisto includes a panel showing users’ edit 
histories (Figure 2.A). This panel shows a history of notebook 
versions and a preview of user edits (which are displayed as 
diffs—additions and deletions from the previous snapshot). 
Every user action (such as cell edits, deletions, insertions, 
and executions) is recorded and displayed for users to see 
and better understand what their collaborators are working 
on. This panel also allows users to check notebook diffs in a 
complete view (by clicking on any diff summary), which will 
show the code and output differences (see Figure 4). 

Connecting Messages and Notebook Content 
As we found in our formative study, data scientists often re-
fer to the computational notebook in their discussions. Prior 
work [33] has proposed enabling chat messages to refer to 
regions of code. However, our study participants referenced 
more than code; they referenced program output (which can 
be graphical or textual) and specific notebook cells. They also 
referenced things that were not explicitly part of the compu-
tational notebook, such as prior notebook versions or code 
edits themselves (e.g., “I made this change. . . ” referring to 
edits they made to fix the buggy code). These references were 
implicit; they required readers to infer what they referred to. 
Callisto is the first system to explicitly encode these references. 
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Current Notebook 5 minutes ago

3:31pmBob
Executed a modified cell

data.plot.scatter(x='GrLiv+

@@ -1,7 +1,7 @@

Alice 3:30pm
Executed a modified cell

data.plot.scatter(x='GrLiv+

@@ -1,7 +1,7 @@
# scatter plot grlivarea/s

Filter

Chat

Alice

What about these outliers? marker

3:30pm

Let me check their values.

3:31pmBob

They were both sold in 2008 

3:33pmBob

cell

Alice

Financial crash?

3:34pm

Write your message

search

In [8]:

data.plot.scatter(x='GrLivArea', y='SalePrice');
# scatter plot grlivarea/saleprice AB

In [ ]:

Is there a linear relationship between GrLivArea and SalePrice?

House Price Prediction

Figure 3. Filter Mode. When filter mode is enabled, it only displays messages and edits that are marked as relevant to the selected cell. 

Encoding connections between messages and notebook con-
tent allows users to give their messages clear context and 
can make the computational notebook easier to interpret and 
navigate for future readers. Inspired by our formative study 
analyzing the granularity of the notebook elements collabo-
rators referred to, messages make five types of references to 
notebook elements in Callisto: 

• code references are associated with a specific range of code 
at the time when that reference was created, 

• cell references are associated with a cell in the notebook, 
• snapshot references point to a previous notebook version, 
• annotation references allow users to refer to a specific por-

tion of output (images or tables) by drawing annotations on 
that output and referencing those annotations, and 

• diff references point to an edit in the notebook. 

References can either be created explicitly by users or inferred 
by Callisto through context (as we describe in more detail 
below). Users explicitly create references by clicking the chat 
input’s magic wand (Figure 2.J) and then selecting the relevant 
part of the notebook or version history panel. 

Automatically Inferring References from Context 
Although explicitly creating references requires little overhead 
(clicking the “edit link” button (Figure 5.B) and then the rele-
vant part of the notebook), we built features to further reduce 
the effort required by automatically inferring references from 
users’ work context—the cell that is currently selected or that 
they are editing, which their message likely pertains to. Al-
though active collaborators might have no trouble decoding 
these messages’ context (possibly by looking at where that 
user’s cursor currently is), it can be more difficult for future 
collaborators as they catch up on prior discussions. Thus, Cal-
listo automatically attaches a cell reference to the currently 
selected cell if users do not add an explicit reference. 

This method of inference might produce erroneous references. 
For example, if the purpose of the message is planning, the 

message might relate to the cell that the user is going to edit, 
instead of the cell he just edited. However, we believe false 
negatives (when relevant context is not captured) are much 
more costly than false positives (when the context captured 
is not relevant) for users, as it is easier to ignore extraneous 
information than to recover missing information. Users can 
also manually correct errors from automatic inferences. 

Navigating Messages and Notebook Content 
By connecting messages and notebook content, Callisto gives 
a richer context to notebook elements and makes it easier to 
understand prior discussions. This can be helpful for both 
current collaborators and future readers. There are two broad 
uses for these connections: to understand the context of a given 
message (from messages to relevant notebook content) or to 
find the part of the discussion that is relevant to a specific part 
of the notebook (from notebook content to relevant messages). 
The former demonstrates “what changes were made” while 
the latter explains “why changes were made” [41]. 

From Messages to Notebook Content 
While collaborating, data scientists often need to determine 
which part of a notebook a given message pertains to. Active 
collaborators and users reading past discussions benefit from 
certainty about a given message’s context. In order to help 
build this context for messages, Callisto allows users to nav-
igate from a reference in the chat panel to the relevant part 
of the notebook. References in the discussion panel appear 
like Web links. When a user clicks on the reference, Callisto 
highlights the relevant elements in the notebook (and scrolls 
to them if necessary). Messages might become “out of date” 
if they reference an element of the notebook that is later mod-
ified or deleted. To ensure references stay relevant, Callisto 
automatically “backtracks” references; if a user clicks on a 
reference to an element that was later changed, Callisto shows 
them the referenced content in a snapshot view. 
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Figure 4. Diff View. Code differences (see A) and output differences (see 
B) are highlighted in a diff view. The new and old outputs are overlapped 
for comparison: hovering the mouse over the output will highlight the 
difference in purple and pink; the slider underneath controls the trans-
parency between new and old output. 

Subsequent notebook readers might also want to understand 
how the content of the notebook changed as the discussion 
moved on—what collaborators were doing between messages. 
To allow readers to understand how the notebook evolved 
through the discussion, Callisto enables them to compute the 
difference between any set of notebook versions. For example, 
if a user selects two chat messages, a diff button will appear 
in the chat panel, as Figure 5 shows. This will trigger Callisto 
to render the code and output differences between the state of 
the notebook when each of those messages was sent. 

From Notebook Content to Messages 
Computational notebooks are often shaped by many design 
decisions, failed experiments, and progressive iteration. For 
collaborative computational notebooks, explanations of why 
the notebook ended up the way it did can often be inferred 
through careful examination of discussions between collabo-
rators. By linking notebook content to discussion messages, 
Callisto allows users to see which parts of a discussion are 
relevant for a particular part of the notebook. As Figure 3 
shows, users can click on a cell to display relevant discussions. 

EVALUATION 
We designed a two-stage evaluation study with 32 data sci-
ence students to assess how Callisto assists new collaborators 
when joining the collaborative notebook. We first observed 
participants working in pairs on a data science task in real time 
to test Callisto’s usability (the real-time collaboration study). 
We then conducted a comparison study with a third individual 
joining the shared project using Callisto or a lite version of the 
system with no contextual links (the follow-up study). 

General Study Protocol (for Both Stages) 
The real-time collaboration study and the follow-up study 
follow a similar study protocol. We invited each participant for 
a 90-minute lab session. Before the study, participants reported 
their data science backgrounds on a pre-task questionnaire. 
Each participant was given a 15–20-minute training session 

Figure 5. Chat Panel. When selecting one message, a snapshot button 
(see A) will navigate users to the snapshot of the notebook. When select-
ing two messages, a diff button (see C) will navigate users to the diff view 
comparing two snapshots (see Figure 4). Users can manually refine the 
links using the edit button (see B). 

on the tool, with example tasks to complete. After the study, 
we conducted a 10–15-minute semi-structured interview with 
each participant. We collected data from server-side usage 
logs, screen recordings, and post-task interviews. We also 
took observational notes during the study. 

Participants (for Both Stages) 
We reached out to data science programs and interest groups 
on campus, filtering qualified participants based on the courses 
they had taken and other data science-related experience. Over-
all, qualified participants were familiar with Jupyter Notebook, 
Python, and common exploratory data analysis packages (e.g., 
Pandas, NumPy). Most of them had experience of collaborat-
ing on an exploratory data analysis project. 

We recruited 32 participants in total (11 female, 20 male, 1 
non-binary, average age = 25). Participants were from a variety 
of data science-related programs (8 undergraduate students, 5 
master’s students, 18 Ph.D. students, and 1 full-time employee 
who recently graduated; students’ majors included computer 
science, information science, health information, statistics, 
and economics). 

Based on participants’ prior knowledge, we rated their experi-
ence level as beginner‡ (n=6), intermediate§ (n=10), or expert¶ 

(n=16). We randomly assigned participants into one of the 
two stages with a balanced distribution of experience level. 
There was no overlap in participants across study stages. We 
compensated participants with $25 USD gift cards. 

Stage 1: Real-time Collaboration 
In Stage 1, we investigated the perceived usability of Callisto 
for real-time collaboration. We observed eight participants 
‡Beginner: has taken 1–2 data science classes, basic experience with 
Pandas and Python, but little experience with data science problems 
§Intermediate: limited experience with data science problems 
¶Expert: is familiar with libraries frequently used in data science, 
and very experienced in solving data science problems 
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S1 Real-time Collaboration (4 pairs) x σ 

Cell Edits 64.50 34.57 
Messages 101.00 76.40 
Creating Pointers 7.25 1.71 
Making Annotations 11.25 7.45 
Erroneous References 8 15.3 
S2 Follow-up (10 individuals) x σ 

Clicking on Pointers 8.40 4.51 
Viewing Notebook Snapshot 10.20 5.45 
Viewing Notebook Diffs 15.30 7.60 
Inspecting Cells for Curated Messages 44.80 48.93 
Inspecting Messages for Related Cells 40.00 20.95 

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Table 4. Server-side Usage Logs (mean: x, standard deviation: σ ): (1) 
Most contextual links were created by inferred references; (2) The two 
navigating features were used equally to understand past decisions. 

(P1–P8) working in pairs to solve a data science task together 
using the full version of Callisto. Participants were invited 
to the study site at the same time and sat in separate rooms. 
We informed participants at the outset that they would not 
have enough time to complete the task and a new collaborator 
would take over the remaining work. 

The data science task was modified from a Kaggle competi-
tion (predicting house sale price). To scope the task within 
the study duration, we asked participants to only perform ex-
ploratory data analysis. We provided a basic framework of the 
notebook for participants to begin with, as well as example 
API usage code for common data analysis packages. 

Overall Usage 
As Table 4 shows, each group edited the notebook an average 
of 64.50 times during the 45-minute exploration. We recorded 
a cell editing event when a cell being executed was modified 
from its last execution. Participants frequently used the anno-
tation feature (11.25 times per group) when discussing outputs. 
However, not all annotations were used for creating references. 
In fact, only 7% of the messages contained references that 
participants manually created. Most of these manually created 
references (26 out of 29) were cell pointers. 

Creating References (Manual and Automatically Inferred) 
In most cases where participants manually created a reference 
in a message, they used cell pointers with the default textual 
description “cell”. Participants gave a variety of reasons for 
using cell pointers over other pointers, including that discus-
sions are often not around a particular piece of code, and that 
pointing to a cell requires less effort than creating other point-
ers. Participants also mentioned that the ability to check their 
collaborator’s cursor served the same function as the pointer 
when they were talking about code cells in real time: 

I can know my collaborator’s cursor so it is easy to know 
what she is talking about. So we didn’t use much refer-
ences, only a few cell links. (P3, expert) 

We identified five cases where participants could have used 
references to make their communication more efficient. For 
example, one participant could have directly pointed to a num-
ber in the table by creating an annotation reference, but instead 

he described it as “the two values with bigger GrLivArea as 
rows with IDs 1182 & 691”. Worse still, some participants 
described locations relative to their field of view, which fur-
ther increased the difficulty for new collaborators to parse the 
message (“If you scroll up to the cell above, it looks like the 
ID is always one higher than the Pandas index.”). 

Because participants created relatively few manual references 
(7.25 out of 101 messages on average per group), Callisto’s 
ability to automatically infer relationships between messages 
and notebook cells is crucial. In order to understand how 
well Callisto’s reference inference feature works, we manually 
checked the messages and found that 92% of messages were 
connected to the correct context (only a total of eight messages 
were mismatched with the inferred cell references). 

Annotations Aid Communication 
Participants used the annotation feature frequently, and we 
investigated its popularity in the post-task interview. Most 
participants agreed that the annotation feature reduced com-
munication costs: 

A lot of our discussions are about the graphs. I really 
like the ability to draw on the graphs so we knew what 
exactly we were talking about. (P4, intermediate) 

[When using Slack] I have to make a screenshot and save 
it on desktop. I do not like saving too many images on 
the desktop so I like this tool. (P1, beginner) 

Stage 2: Following up with the Collaboration Process 
In Stage 2, we evaluated how a new collaborator better fol-
lowed up with an ongoing collaborative project. We compared 
two versions of Callisto in this stage: a lite version where no 
contextual links are captured and stored, only basic collabora-
tion features are enabled; and the full version. 

Content Preparation 
We designed the assets (the notebook history, chat messages, 
and their connections) for the “ongoing collaborative project” 
by merging and modifying the collaboration assets produced 
in Stage 1. The combined project used in Stage 2 contained 
42 cell edits, 132 messages, and 19 manual references. In 
the lite version of Callisto, we replaced the manual references 
with a textual description of the location in the notebook. To 
ensure these textual descriptions were realistic, we observed 
two more groups (in addition to the pairs described in the 
previous section) doing tasks in Stage 1 using the lite version. 
We identified several strategies that participants used to point 
to notebook elements, and replaced the references based on the 
three most common strategies: cell execution number, pasting 
the content directly, and describing the location of the content. 

Study Setup 
We recruited 20 participants and randomly assigned them to 
one of the two conditions: the experimental condition using 
Callisto, and the control condition using the lite version. We 
informed participants that the previous collaborators (Alice 
and Bob) were in a rush and did not finish the exploration. 
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Callisto Control 

x 30.05 23.75Questionnaire Score* 
σ 6.27 3.85 

x 1577.21 1416.05Time (sec) 
σ 237.35 320.28 

x 5.00 5.26Self-reported Confidence 
σ 0.66 1.16 

Table 5. Comparing the outcomes from the second stage of the evalua-
tion (mean: x, standard deviation: σ ). Callisto helps new collaborators 
achieve a better understanding of an ongoing project. 

We asked participants to explore the notebook and answer five 
questions|| related to Alice and Bob’s prior analysis. The ques-
tions were designed using Revised Bloom’s Taxonomy (RBT) 
to assess participants’ understanding [28]. For example, out-
lining features that Alice and Bob have explored, and sum-
marizing their findings about the distribution of sale price. 
Participants had six minutes to read details from the note-
book and answer each question. We collected the answers and 
measured time and participants’ self-reported confidence level 
(on a seven-point Likert scale) for each question. At the end, 
we gave participants 10 minutes to use the tool in depth to 
follow up on their work (e.g., clean the notebook, add more 
explanations, or continue exploring the problem). 

To assess how well participants understood the ongoing collab-
oration process, we designed a rubric to grade their answers 
to the five questions (maximum score = 50). Two external 
data science experts independently graded their answers. We 
performed a Pearson correlation coefficient test and found a 
strong agreement on the rating (r = 0.97, p < 0.001). 

Overall Performance 
As Table 5 shows, participants in the experimental condition 
(avg = 30.05) achieved a higher score than participants in 
the control condition (avg = 23.75), with a two-sample t-test 
suggesting that the difference is significant (p = 0.014). There 
was no significant difference in the time costs or the self-
reported confidence level between the two conditions. 

To investigate why participants performed better in the ex-
perimental condition, we studied their usage logs and screen 
recordings. As Table 4 shows, participants in the experimental 
condition used the two navigating features in Callisto equally 
to understand past decisions and discussions. 

Understanding Discussions Around the Cell 
Participants in both conditions reported a need to check the 
chat messages even though the notebook already contained 
some code comments and explanatory texts. They complained 
that the code comments were not well written: 

Some comments are hard to parse. (P22, expert, experi-
mental condition) 

They could have used the markdown cells more to con-
clude the results. (P16, expert, experimental condition) 

||See supplementary materials for the full rubric and set of questions. 

Comparatively, participants in the control condition found it 
difficult to follow the chat messages due to the sheer quan-
tity. We observed that three participants in the control condi-
tion misaligned the chat messages with the notebook content 
when answering a question about how Alice and Bob analyzed 
the linear relationship between SalePrice and YearBuilt. 
They answered the question incorrectly because they de-
scribed the discussions about the linear relationship between 
SalePrice and another feature (GrLivArea, which appeared 
earlier in the analysis). Two participants in the control con-
dition wanted chat messages to be mapped with notebook 
content: 

I wish there is a way to attach the messages to the cell that 
they discussed. It will save me time. (P30, intermediate, 
control condition) 

While participants in the experimental condition benefited 
from the established connection between messages and note-
book, they further reported the filter feature helpful in curating 
discussions around cells. On average, each participant in-
spected cells 44.8 times to filter related messages, checking 
14.9 unique cells. In addition, we observed that most partici-
pants (9 out of 10) preferred to keep the filtering mode enabled 
as they dove deeper in the notebook: 

Because the chat is so long, I think it is not useful until I 
filter it down. (P18, expert, experimental condition) 

Understanding the Context of the Message 
We observed participants used the contextual links in Cal-
listo the other way (from messages to notebook content) to 
understand the context of a message. Participants inspected 
messages 40 times to check related cells in the final notebook, 
or perform further actions such as checking snapshots (10.2 
times) or comparing diffs (15.3 times). 27.4 unique messages 
were inspected by each participant, indicating that participants 
may go back and forth to check messages and related cells. 

We further investigated why checking and comparing note-
book edits from messages helped participants better under-
stand the analysis from observation notes and screen record-
ings. We illustrated one interesting case of how participants 
approached the answers in the questionnaire differently. One 
question asked how Alice and Bob analyzed the outliers in 
the GrLivArea. Participants from the experimental condition 
were able to find all relevant analyses with two alternative 
hypotheses, where the code cell for testing one hypothesis was 
overwritten by the code cell that tested the second hypothesis. 
However, most participants from the control condition only 
reported the second hypothesis on the final notebook. 

In addition, Callisto helped participants better understand how 
a code change resulted in an output change. As shown in Fig-
ure 4, Alice and Bob applied a log transformation to correct 
the distribution of SalePrice, only commenting vaguely on 
the results in the chat (“the result looks much better”). Par-
ticipants in the experimental condition were able to compare 
the notebook diffs between this message and the one above, 
gaining an intuitive comparison of how the output changed 
from the diff view (see Figure 4.B). In contrast, participants 
in the control condition needed to first guess what might have 
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changed in the notebook, then revert changes (e.g., remove the 
np.log) and execute the cell to compare the output. 

DISCUSSION 
Reflecting on Callisto’s design, we discuss how future tool 
builders of computational notebooks and data science re-
searchers can build on our work. 

Reducing the Burden of Communication 
Our findings revealed that participants in the real-time col-
laboration setting are hesitant to make accurate and polished 
references, or to create references, even if the interaction takes 
only two clicks. This corresponds to studies in other domains 
that report user reluctance to write quality annotations or com-
ments during active work [7, 31, 6]. Future work should 
consider optimizing this process by designing shortcuts or pro-
viding suggested references inferred by edits in the notebook 
(e.g., a newly added annotation). 

As prior work [42] shows, data scientists use a variety of com-
munication tools, including high-bandwidth communication 
channels such as video conferencing or face-to-face meetings. 
Capturing information exchanged in these channels is difficult 
yet important to reduce the burden of text-based communica-
tion. It is worth studying the benefits and challenges of us-
ing different communication channels in data scientists’ daily 
work to leverage past discussions for a better understanding of 
shared work. 

In addition, we believe similar techniques could work in other 
domains where remote collaborators co-design a shared arti-
fact that changes over time, as long as the reference types are 
domain appropriate. For example, Callisto’s features could be 
adapted for a shared CAD tool where designers collaborate 
on a 3D model, but our results and designs may not apply 
for highly modular work (such as multiple authors writing 
different chapters of a textbook with minimal interaction). 

Improving the Accuracy of Contextual Links 
As most of the messages (around 93%) relied on inferred 
references, we believe that it is important to explore ways to 
further improve the accuracy and recall of inferred references. 
Mismatched contextual links happened for several reasons. If 
a message describes a future action, the relevant cell may not 
exist when the message is sent. In this case, we may consider 
using Natural Language Processing (NLP) techniques to infer 
whether the message should be connected to the cell edited 
before sending the message or the cell edited after sending 
the message. Another possible reason is that a message might 
reference a cell the writer’s collaborator is working on, instead 
of the one the writer is working on. It is worth exploring 
other strategies (e.g., considering common cells that nearby 
messages connect to) to automatically infer the context. 

Towards Generating Meta-Narratives 
New collaborators not only need to understand the computa-
tional narrative itself but also how that narrative evolved—the 
meta-narrative behind the narrative. Callisto is a representa-
tion of meta-narratives for computational notebooks. Creating 
an explicit meta-narrative object can be useful for onboarding 

new collaborators during the data-exploration process, as we 
found in our evaluation. These meta-narratives could also 
be useful in education; many programming lectures involve 
creating a form of meta-narrative. They could also be used in 
“traditional” writing. Future research could explore alternative 
representations for meta-narratives for a variety of domains. 

Limitations 
Callisto is designed and evaluated in the scope of within-
notebook collaboration, where collaborators work in the same 
notebook and treat the final narrative as an end goal. The 
setup of the formative study is designed to encourage real-
time chatting and collaboration, which may not be an accurate 
representation of most collaboration and communication sce-
narios. In addition, our in-lab evaluation contains several 
limits to external validity: participants are all students from 
the authors’ home institution; participants may not be profi-
cient enough in Callisto given the short training time; we only 
evaluated one type of data science problem and provided the 
framework of the notebook rather than asking them to start 
from scratch. 

SYSTEM IMPLEMENTATION 
Callisto** consists of two Jupyter Notebook extensions—one 
small extension for Jupyter’s file browser (to make it easier to 
join shared notebooks) and the “main” extension for Jupyter 
Notebooks (Figure 2)—and a Node.js backend. Callisto keeps 
collaborators in sync (including notebook content, chat, lists 
of collaborators, and runtime state) through Operational Trans-
formations (OTs), as implemented through ShareDB [1]. To 
maintain connections between messages and cells, Callisto 
tracks the edit history through the lifetime of the notebook and 
stores a unique id in the metadata of each cell, which stays 
constant as cells are inserted, deleted, and rearranged. 

CONCLUSION 
In conclusion, we have proposed the design of Callisto to 
leverage valuable chat messages in collaborative data science. 
Our two-stage evaluation study with 32 data science students 
confirmed that Callisto eases new-collaborator onboarding 
by helping them understand the design rationales of the note-
book’s authors. In particular, Callisto successfully captures 
contextual links during the real-time collaborative creation 
of the notebook without hindering exploration, while the es-
tablishment of contextual links and the set of interactions for 
navigating the notebook significantly improve new notebook 
collaborators’ understanding of past discussions and decisions. 
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