
 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Callisto: Capturing the “Why” by Connecting
Conversations with Computational Narratives

April Yi Wang†, Zihan Wu‡, Christopher Brooks†, Steve Oney†

†University of Michigan School of Information, ‡Tsinghua University
{aprilww, ziwu, brooksch, soney}@umich.edu

ABSTRACT
When teams of data scientists collaborate on computational
notebooks, their discussions often contain valuable insight into
their design decisions. These discussions not only explain anal-
ysis in the current notebook but also alternative paths, which
are often poorly documented. However, these discussions are
disconnected from the notebooks for which they could provide
valuable context. We propose Callisto, an extension to com-
putational notebooks that captures and stores contextual links
between discussion messages and notebook elements with
minimal effort from users. Callisto allows notebook readers to
better understand the current notebook content and the overall
problem-solving process that led to it, by making it possible
to browse the discussions and code history relevant to any part
of the notebook. This is particularly helpful for onboarding
new notebook collaborators to avoid misinterpretations and
duplicated work, as we found in a two-stage evaluation with
32 data science students.

Author Keywords
Computational Notebooks; Collaborative Systems; Data
Science; Literate Programming

CCS Concepts
•Human-centered computing → User interface program-
ming; Synchronous editors;

INTRODUCTION
Data scientists benefit from collaborations to leverage exper-
tise from each other and to improve the efficiency of their work.
Computational notebooks are powerful tools for collaborative
data science because they allow data scientists to document
and replicate the exploration process through the creation of
computational narratives—documents that combine code, ex-
planatory text, and intermediate output. New tools like Google
Colab [4] and Deepnote [3] enable data science teams to work
in the same notebook in real time, creating new possibilities
for collaboration.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
http://dx.doi.org/10.1145/3313831.3376740

In []:

In []:

.QTGO�KRUWO�FQNQT
In []:

In []:

.QTGO�KRUWO�FQNQT

notebook changed over time

messages sent over time

In []:

In []:

.QTGO�KRUWO�FQNQT

.QTGO�KRUWO�FQNQT�UKV�COGV��
EQPUGEVGVWT�CFKRKUEKPI�GNKV�

Figure 1. Callisto captures and stores contextual links between discus-
sion messages and notebook elements with minimal effort from users.

Effective communication between data science team members
is critical for productive teamwork. Collaborators need to
understand what their teammates have done so far, what they
plan to do, what they have given up, and how their work fits
in with the team’s overall goals. Team members can improve
their shared understanding by (a) writing clearer code, (b) doc-
umenting their work, and (c) discussing as a team. Improving
code clarity (a) and writing clear documentation (b) are often
impractical for data scientists, who frequently write makeshift
code to experiment, explore, and test hypotheses [42, 27, 22,
39, 40].

Data science teams often have rich team discussions (c)
through communication channels such as e-mail, instant mes-
senger, and face-to-face meetings [42, 27]. These discus-
sions are often crucial for collaborators to work together ef-
fectively, as they can provide valuable context about notebook
authors’ goals and design rationales. However, these discus-
sions are disconnected from the computational notebooks be-
ing discussed—they typically occur in channels outside of the
notebook and references to notebook content are implicit (e.g.,
“there’s a bug in the second cell” or using a notebook screen-
shot). This means that team members typically need to have a
shared context to make sense of the discussion (i.e., they need
to understand what “the second cell” means or which part of
the notebook a screenshot refers to). This can be particularly
challenging as the notebook evolves (for example, if the “sec-
ond cell” is moved after it is referred to). As a result, although
discussions are helpful for collaborators who are actively in-
volved in it, they can be difficult to understand for new team
members or anyone catching up on the discussion [44] who
does not have this shared context.

In this paper, we propose to improve collaborative data sci-
ence by connecting discussions with computational notebooks.

Paper 611 Page 1

mailto:aprilww@umich.edu
mailto:ziwu@umich.edu
mailto:brooksch@umich.edu
mailto:soney@umich.edu
mailto:permissions@acm.org
http://dx.doi.org/10.1145/3313831.3376740
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3313831.3376740&domain=pdf&date_stamp=2020-04-23

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

We first describe the results of a formative study where we
found that chat messages can be invaluable to understanding
collaborative computational notebooks but are difficult to com-
prehend afterwards. We then introduce Callisto, a plugin for
Jupyter [19]. We designed Callisto with the insight that dis-
cussions are an integral part of collaborative computational
notebooks and connecting discussions with notebook content
can make the notebook easier to understand for its authors and
for subsequent readers. Callisto augments Jupyter with several
collaborative features—most notably, the ability to explicitly
reference notebook elements in chat messages. These con-
nections make it easier to understand the context of a given
message and to find discussions that are relevant to a specific
notebook element.

We conducted a two-stage evaluation of Callisto. In the first
stage, we evaluated how Callisto supports real-time team com-
munication and found that it can reduce communication costs.
In the second stage, we evaluated whether Callisto can help
data scientists better understand a discussion that has already
taken place. We found that Callisto can ease user onboarding
to new notebooks by helping them understand the design ra-
tionales of its authors. As one of our participants put it, “by
reading the code, I know what they were doing. But with the
chat messages, I can know what they were thinking.”

This paper contributes:

• empirical evidence of the challenges that data scientists
encounter when catching up with an ongoing group project,

• the design of Callisto with a set of features to make chat
messages more useful for understanding the past exploration
process in the notebook,

• empirical insights into how users engage with and perceive
these features, and

• evidence that creating mappings between messages, note-
book elements, and versions helps data scientists understand
and follow up on the exploration pipeline.

RELATED WORK

Computational Notebooks
Computational notebooks are widely used to create and share
the exploration process for data science [36]. As a practice of
exploratory programming, data science often involves writing
code to actively experiment [22]. The design of computational
notebooks makes it easy for data scientists to rapidly iterate
on code chunks and inspect the intermediate results during
the exploration process. Data scientists also benefit from com-
bining exploratory code with human-readable explanations to
create computational narratives—a practice of literate pro-
gramming [26], and a medium for data science practitioners
[23, 27, 32, 35, 24], scientific programmers [15, 37], and data
science educators [29] to share and reproduce work with a low
cost for setting up the environment. Recent groupware tools
like Google Colab [4] and Deepnote [3] enable synchronous
editing for data scientists to collaboratively author compu-
tational notebooks, which encourages more exploration and
discussions over the shared context [42].

Although having a well-documented computational narrative
offers many benefits, it is challenging for data scientists to

maintain an updated explanation and a clean notebook during
the exploration process [39]. When the problem gets complex,
data scientists tend to write lower quality code, leave documen-
tation incomplete, change the execution order, or accidentally
overwrite important analyses while iterating on different ideas
[21, 18]. These tensions can be amplified in a collaborative
setting where it is important to keep a shared understanding of
past design decisions across team members [42, 27, 22].

Prior studies have explored ways to reduce the messiness of
computational notebooks. These include introducing local
versioning to better document past analysis [21], using code-
gathering techniques to curate and reorganize code chunks
[18], and folding code chunks with annotations [38]. These
tools are useful for improving the structure of the notebook, but
they do not directly help with documenting design decisions;
it remains a challenge to help explain the analysis process.
The interpretation and reasoning process of the intermediate
results plays an important role in exploration. By looking at
the same output, data scientists may come up with different
understandings, which lead to different actions they may take
next. In a collaborative setting, data scientists may external-
ize such explanations through the discussion with each other.
Callisto aims to curate these valuable clues to help notebook
readers better understand the exploration process.

Linking Code and Discussion
Callisto extends the idea of post-literate programming, where
discussions are gathered and incorporated into the code [34].
For instance, Github allows users to create an “issue” to start
a discussion and link the issue to a commit or pull request
(submission of code change) [2]; Clerkbot allows software
developers to mark and summarize their chat messages through
a chatbot and link it to their code repository [34]. It is difficult
to directly apply the idea to computational notebooks. First,
data scientists rarely use conventional version control tools
like Git because they are not convenient for versioning and
tracking rapid explorations in computational notebooks [20].
Second, it relies fully on the users to initiate the linking, which
may hinder exploration and communication in collaborative
data science. Data scientists need a lighter way to link the
related discussion to the notebook content.

On the other hand, there are many communication tools that
tie the code content in the discussion to build common ground
[13, 14] in collaborative programming tasks such as tutoring,
help-seeking, and pair programming. For instance, sharing
gaze information among programmers can help communicate
locations in code [12]; online Integrated Development Environ-
ments (IDEs) like JSFiddle [5] and Stack Snippets [17] allow
users to create a minimal, complete, and verifiable example
to directly illustrate the problem on forum posts; Codeon [8]
enables remote helpers to point out locations in code using
annotations; and chat.codes [33] introduces code pointers that
create deictic references to regions of code.

Creating Contextual References
Creating contextual references to reduce communication costs
has been explored in a variety of other contexts [45, 10, 11,
16, 9]. Contextual references can be used to point to a specific

Paper 611 Page 2

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

place in a shared context. For example, NB [45] supports con-
necting social conversations to a specific part of a document’s
content and is particularly useful in the educational context
when students want to start a discussion on lecture notes or
textbooks. Contextual references can also be used to support
the notion of time when the shared context is dynamic. For ex-
ample, ConceptScape [30] connects nodes in a learner-sourced
concept map with timestamps in the educational video; and
chat.codes [33] connects both the code location and the version
history with chat logs.

Inspired by chat.codes [33], Callisto connects chat messages
with notebook content and tracks the timestamp, version his-
tory, and location of elements that are discussed. To capture
the location of elements, Callisto extends the design of code
pointers as one data source to collect deictic references be-
tween notebook and discussions. This approach captures ac-
curate contextual links in a convenient way, but still requires
explicit effort from users. Unlike chat.codes, Callisto also
collects users’ implicit interactions (e.g., cursor position) in
the notebook to automatically create contextual links between
code and discussion when the messages do not contain explicit
pointers. Callisto enables two-way interaction between mes-
sages and notebook content, whereas chat.codes only supports
navigating from messages to code.

FORMATIVE STUDY
To better understand how discussions can be useful for explain-
ing the data-exploration process, we analyzed chat messages
collected from three data science group projects. In doing so,
we aimed to investigate three questions: (1) Why do collabo-
rators send messages to one another? (2) How do messages
connect with the evolving notebook? and (3) What aspects of
the notebook do collaborators talk about?

Method
We recruited six data science students from data science spe-
cial interest groups in both university and online learning
environments. We asked participants to work remotely in pairs
on a beginner-level data science task* using a collaborative
Jupyter editor for four hours. This collaborative Jupyter editor
synchronizes edits between users and allows collaborators to
see each other’s cursors. Pairs also worked in a shared runtime,
meaning that code ran on a single interpreter, with outputs
shared between collaborators. There were no other explicit
communication mechanisms (chat, voice, etc.) enabled in the
editor, and participants were given access to a third-party text
chat (Slack) for communication. We collected chat messages,
final notebooks, and screen recordings during the study.

Data Analysis
Our formative study uses a similar data analysis approach (in
a different setting) to Yarman et al.’s work on cross-media
referencing [43]. Two members of the research team used
open coding to classify the collected data. We used the first 50
messages to create an initial code list, using final notebooks
and video recordings as secondary evidence to help recall
messages’ context. After discussing and merging the code
*https://kaggle.com/c/house-prices-advanced-regression-techniques

list, the two members independently coded the same sample
of 50 messages and achieved an agreement of κ = 0.40. We
revised codes to reduce ambiguity and achieved an agreement
of κ = 0.83 between raters after two rounds of iteration.

Results
In total, we analyzed 760 chat messages to better understand
their purpose, their relationship to the evolving notebook, and
the specific aspects of the notebook they mention.

Purpose
We found five broad purpose categories: reflection (244), plan-
ning (87), check-in (121), cooperation (67), and out-of-scope
messages (244), as Table 1 shows. Messages could fit into
multiple categories, such as planning and cooperation. Mes-
sages coded as reflection tended to expand on the reasoning
behind past decisions, while planning messages discussed po-
tential features that had not yet been implemented. Check-in
messages were updates between collaborators on what they
had done, while cooperation messages generally discussed
collaboration strategies.

These four categories show that chat messages can help explain
the data-exploration process, describe the purpose of the code,
and provide a high-level interpretation of the results. Not
surprisingly, however, we categorized an additional 30% of
messages as out-of-scope, because they did not convey useful
information for explaining the exploration process and instead
contained duplicate information or socialization messages.

Relevance
Our analysis (shown in Table 2) revealed that the final note-
book is generally not reflective of the whole exploration pro-
cess. Data scientists often explored ideas in discussions that
they later rejected and wrote no analysis for. Even if they did
implement an analysis to explore an idea, the code was often
modified or removed during a “cleanup” stage [23, 18]. As
such, messages between collaborators can fill in missing de-
tails of the exploration process. We suggest that revealing this
information to new collaborators (e.g. someone taking over a
project or another data scientist helping with an analysis) may
avoid duplication of work while simultaneously revealing hid-
den assumptions. However, given that the Jupyter Notebook’s
current design does not have built-in collaboration features
nor track edit histories (which can give context to discussions),
it is difficult to use chat messages to understand a previous
exploration process.

Granularity
We also investigated the granularity of the notebook elements
collaborators referred to (Table 3), finding that 97 messages
directly referred to a specific line of code. These messages
were related to Application Programming Interface (API) us-
age, debugging, or sharing the current status. A further 119
messages directly related to the output of a cell, including the
data frame, visualizations, and statistical values. Finally, 206
messages described high-level ideas implemented across one
or multiple cells.

Implications
We derive three design implications from our findings:

Paper 611 Page 3

https://kaggle.com/c/house-prices-advanced-regression-techniques

Purpose Example n

Reflecting “This plot confirms the correlation for sure.” 244
Planning “Let’s throw away columns that have lots of missing values.” 87
Check-in “Just did a square root.” 121
Cooperation “Ok, while you fix the stuff, I’ll create one hot encoding for categorical [variables].” 67
Out-of-scope “Oh no!!” 244

Table 1. Purpose of sending a message: reflecting, planning, check-in, cooperation, and out-of-scope.

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Relevance Example n

Ideas that were only discussed but never implemented “Do you think we can just assign 1,2,3,4,5 to it and 29
create one column instead?” (“No, I am afraid ...”)

Ideas that had not yet been implemented when the message “How about we start with numerical columns?” 150
was sent, but appeared in the notebook later
Ideas that had been implemented in the notebook when the “Something went off. The MSE [mean square 72
message was sent, but did not appear in the final notebook error] is huge.”
Ideas that had been implemented when the message was “For the test data I did a fillna with 0.” 108
sent and appeared in the final notebook

Table 2. Relevance between messages, the notebook history, and the final notebook.

Granularity Example n

Directly referred to a specific line of code “I think LabelEconder is going to treat NA as a new encoding.” 97
Directly referred to the output of a cell “I am not too convinced if our MSE values are good enough.” 119
High-level ideas across multiple cells “I just converted the categorical [data] to numerical [data].” 206

Table 3. Granularity: the level of detail of the referenced elements

Chat messages are useful for explaining the exploration
process. We were able to better understand the motivations
for doing specific analyses, the purpose of the code written
to run them, the interpretation of their results, and alternative
analysis paths (tested or rejected without implementation).
These details are often missing or poorly captured in traditional
Jupyter Notebook artifacts.

Chat messages are difficult to follow. Chat messages are
long and tedious to read because of scattered insights, a large
amount of out-of-scope information, and information that
requires notebook context to understand (which is likely to
change before being finalized, as Table 2 shows). This makes
it difficult for newcomers to build on earlier work.

Notebook elements are frequently referred to in chat mes-
sages. Notebook elements, such as fragments of code, output
of executions, and cells containing a variety of statements, are
frequently mentioned in chat messages. The lack of connec-
tion between these elements and discourse limits insight into
decisions and results.

DESIGN OF CALLISTO
We designed Callisto to improve collaborative data science by
better connecting discussions with notebook content. Callisto
extends the Jupyter Notebook platform in several ways. First,
it allows users to share notebooks, collaborate in real time, and
discuss with collaborators. Second, it enables users to connect
discussions with elements in the shared notebook, including
code, output, individual cells, or edits. Third, it leverages
these connections to make it easier to navigate discussions and
notebook content—for example, to find discussions about a

particular part of the notebook. We describe the design of each
of these facets of Callisto in more detail below.

Enabling Sharing and Real-Time Collaboration
Although the creators of Jupyter recognized the importance of
real-time collaboration, they left it as future work† [25]. Sev-
eral offshoots of the Jupyter project [4, 3] have incorporated
collaborative features such as synchronized editing and shared
cursors. Callisto starts by enabling notebook sharing and edit
synchronization in Jupyter. We designed Callisto as a Jupyter
plugin, rather than as a fork of the codebase, to allow users
to easily share any standard Jupyter notebook and maintain
compatibility with future versions of the Jupyter platform.

Basic Collaboration Features
The Callisto plugin augments the standard Jupyter User In-
terface (UI) with several widgets, as Figure 2 shows. First,
Callisto adds a “share” button that generates a unique URL for
collaborators to join the shared notebook session. A panel lists
the collaborators that are connected to the notebook (Figure
2.D). When collaborators join the notebook, their edits are
synchronized in real time with other collaborators. They can
also see every other user’s cursor location and selection (Fig-
ure 2.F) and navigate to any other user’s location by clicking
on their name in the list of collaborators (Figure 2.D).

Shared Runtime and Outputs
One important difference between computational notebooks
and standard code is that computational notebooks are divided
into smaller cells that can be run individually. Cells run in a
†At the time of writing, Jupyter does not support real-time collabora-
tion.

Paper 611 Page 4

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Current Notebook 5 minutes ago

3:31pmBob
Executed a modified cell

data.plot.scatter(x='GrLiv+

@@ -1,7 +1,7 @@

Alice 3:35pm
Executed a modified cell

data.plot.scatter(x='GrLiv+

@@ -1,7 +1,7 @@
scatter plot grlivarea/s

Share

Alice 3:30pm
Executed a modified cell

data.plot.scatter(x='GrLiv+

@@ -1,7 +1,7 @@
scatter plot grlivarea/s

Filter Bob Alice

Chat

Alice

What about these outliers? marker

3:30pm

Let me check their values.

3:31pmBob

They were both sold in 2008

3:33pmBob

cell

Alice

Financial crash?

3:34pm

Write your message

searchIn [8]:

data.plot.scatter(x='GrLivArea', y='SalePrice');
scatter plot grlivarea/saleprice AB

In []:

Is there a linear relationship between GrLivArea and SalePrice?

House Price Prediction

In []:

A

B

C D

F

H

G

E

I

J

Figure 2. Overview of Callisto: (A) The changelog panel shows users’ edit histories; (B) The collaborative notebook editor synchronizes edits, runtime
variables, outputs, annotations (see G, H), and cursors (see F) among collaborators; (C) The filter button enables the filtering mode (see Figure 3); (D)
The user panel lists collaborators that are connected to the notebook. Users can navigate to others’ cursor locations by clicking on their name; (E) The
embedded synchronous chat pane creates connections between messages and notebook content. Messages mapped to the selected cell are highlighted in
light green. Users can create explicit references by clicking the magic wand (see J) and then selecting the relevant part of the notebook—for example,
to create an annotation reference (see I).

common variable space, meaning that the ordering and timing
of cell execution can (and typically does) influence execution
outputs. This can be confusing for users, particularly in situ-
ations where one user’s output cannot be replicated by other
users who have different runtime states. Thus, rather than
giving users their own runtime, Callisto connects every collab-
orator to a single shared runtime. This means that the state of
the program is shared—if the value of a variable is modified
(by executing code that modifies its value), its value is updated
for every collaborator. Cell outputs (the results of running a
cell, which can be textual, graphical, or shared data frames)
are also shared automatically, which gives all collaborators a
shared point of reference.

Synchronous Chat
Jupyter does not have built-in messaging features, which
means that data science teams typically communicate through
external tools such as e-mail or Slack [42]. As we found in
our formative study, these communications can be valuable
for understanding the design behind a notebook, but there is a
cost in switching between applications for writing and com-
municating. Thus, Callisto embeds a synchronous chat pane
directly in the shared notebook (Figure 2.E). This built-in chat
pane allows us to capture contextual information and create
connections between messages and notebook content, which
we will introduce later.

Edit and Version History
Prior work has found that shared editors and cursors are helpful
for collaborators but are not enough to build awareness of what

they have worked on [42]. This is partly because they only
allow users to see what collaborators are working on at that
specific moment. Building awareness of collaborators’ activity
instead requires a more complete view of their actions. To
provide this, Callisto includes a panel showing users’ edit
histories (Figure 2.A). This panel shows a history of notebook
versions and a preview of user edits (which are displayed as
diffs—additions and deletions from the previous snapshot).
Every user action (such as cell edits, deletions, insertions,
and executions) is recorded and displayed for users to see
and better understand what their collaborators are working
on. This panel also allows users to check notebook diffs in a
complete view (by clicking on any diff summary), which will
show the code and output differences (see Figure 4).

Connecting Messages and Notebook Content
As we found in our formative study, data scientists often re-
fer to the computational notebook in their discussions. Prior
work [33] has proposed enabling chat messages to refer to
regions of code. However, our study participants referenced
more than code; they referenced program output (which can
be graphical or textual) and specific notebook cells. They also
referenced things that were not explicitly part of the compu-
tational notebook, such as prior notebook versions or code
edits themselves (e.g., “I made this change. . . ” referring to
edits they made to fix the buggy code). These references were
implicit; they required readers to infer what they referred to.
Callisto is the first system to explicitly encode these references.

Paper 611 Page 5

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Current Notebook 5 minutes ago

3:31pmBob
Executed a modified cell

data.plot.scatter(x='GrLiv+

@@ -1,7 +1,7 @@

Alice 3:30pm
Executed a modified cell

data.plot.scatter(x='GrLiv+

@@ -1,7 +1,7 @@
scatter plot grlivarea/s

Filter

Chat

Alice

What about these outliers? marker

3:30pm

Let me check their values.

3:31pmBob

They were both sold in 2008

3:33pmBob

cell

Alice

Financial crash?

3:34pm

Write your message

search

In [8]:

data.plot.scatter(x='GrLivArea', y='SalePrice');
scatter plot grlivarea/saleprice AB

In []:

Is there a linear relationship between GrLivArea and SalePrice?

House Price Prediction

Figure 3. Filter Mode. When filter mode is enabled, it only displays messages and edits that are marked as relevant to the selected cell.

Encoding connections between messages and notebook con-
tent allows users to give their messages clear context and
can make the computational notebook easier to interpret and
navigate for future readers. Inspired by our formative study
analyzing the granularity of the notebook elements collabo-
rators referred to, messages make five types of references to
notebook elements in Callisto:

• code references are associated with a specific range of code
at the time when that reference was created,

• cell references are associated with a cell in the notebook,
• snapshot references point to a previous notebook version,
• annotation references allow users to refer to a specific por-

tion of output (images or tables) by drawing annotations on
that output and referencing those annotations, and

• diff references point to an edit in the notebook.

References can either be created explicitly by users or inferred
by Callisto through context (as we describe in more detail
below). Users explicitly create references by clicking the chat
input’s magic wand (Figure 2.J) and then selecting the relevant
part of the notebook or version history panel.

Automatically Inferring References from Context
Although explicitly creating references requires little overhead
(clicking the “edit link” button (Figure 5.B) and then the rele-
vant part of the notebook), we built features to further reduce
the effort required by automatically inferring references from
users’ work context—the cell that is currently selected or that
they are editing, which their message likely pertains to. Al-
though active collaborators might have no trouble decoding
these messages’ context (possibly by looking at where that
user’s cursor currently is), it can be more difficult for future
collaborators as they catch up on prior discussions. Thus, Cal-
listo automatically attaches a cell reference to the currently
selected cell if users do not add an explicit reference.

This method of inference might produce erroneous references.
For example, if the purpose of the message is planning, the

message might relate to the cell that the user is going to edit,
instead of the cell he just edited. However, we believe false
negatives (when relevant context is not captured) are much
more costly than false positives (when the context captured
is not relevant) for users, as it is easier to ignore extraneous
information than to recover missing information. Users can
also manually correct errors from automatic inferences.

Navigating Messages and Notebook Content
By connecting messages and notebook content, Callisto gives
a richer context to notebook elements and makes it easier to
understand prior discussions. This can be helpful for both
current collaborators and future readers. There are two broad
uses for these connections: to understand the context of a given
message (from messages to relevant notebook content) or to
find the part of the discussion that is relevant to a specific part
of the notebook (from notebook content to relevant messages).
The former demonstrates “what changes were made” while
the latter explains “why changes were made” [41].

From Messages to Notebook Content
While collaborating, data scientists often need to determine
which part of a notebook a given message pertains to. Active
collaborators and users reading past discussions benefit from
certainty about a given message’s context. In order to help
build this context for messages, Callisto allows users to nav-
igate from a reference in the chat panel to the relevant part
of the notebook. References in the discussion panel appear
like Web links. When a user clicks on the reference, Callisto
highlights the relevant elements in the notebook (and scrolls
to them if necessary). Messages might become “out of date”
if they reference an element of the notebook that is later mod-
ified or deleted. To ensure references stay relevant, Callisto
automatically “backtracks” references; if a user clicks on a
reference to an element that was later changed, Callisto shows
them the referenced content in a snapshot view.

Paper 611 Page 6

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Chat

Alice

What about these outliers? marker

3:30pm

Let me check their values.

3:31pmBob

They were both sold in 2008

3:33pmBob

cell

Alice

Financial crash?

3:34pm

search

Snapshot Edit Link (1) Cancel (1)

Chat

Alice

What about these outliers? marker

3:30pm

Let me check their values.

3:31pmBob

They were both sold in 2008

3:33pmBob

cell

Alice

Financial crash?

3:34pm

search

Diff Edit Link (1) Cancel (2)

A B C

Figure 4. Diff View. Code differences (see A) and output differences (see
B) are highlighted in a diff view. The new and old outputs are overlapped
for comparison: hovering the mouse over the output will highlight the
difference in purple and pink; the slider underneath controls the trans-
parency between new and old output.

Subsequent notebook readers might also want to understand
how the content of the notebook changed as the discussion
moved on—what collaborators were doing between messages.
To allow readers to understand how the notebook evolved
through the discussion, Callisto enables them to compute the
difference between any set of notebook versions. For example,
if a user selects two chat messages, a diff button will appear
in the chat panel, as Figure 5 shows. This will trigger Callisto
to render the code and output differences between the state of
the notebook when each of those messages was sent.

From Notebook Content to Messages
Computational notebooks are often shaped by many design
decisions, failed experiments, and progressive iteration. For
collaborative computational notebooks, explanations of why
the notebook ended up the way it did can often be inferred
through careful examination of discussions between collabo-
rators. By linking notebook content to discussion messages,
Callisto allows users to see which parts of a discussion are
relevant for a particular part of the notebook. As Figure 3
shows, users can click on a cell to display relevant discussions.

EVALUATION
We designed a two-stage evaluation study with 32 data sci-
ence students to assess how Callisto assists new collaborators
when joining the collaborative notebook. We first observed
participants working in pairs on a data science task in real time
to test Callisto’s usability (the real-time collaboration study).
We then conducted a comparison study with a third individual
joining the shared project using Callisto or a lite version of the
system with no contextual links (the follow-up study).

General Study Protocol (for Both Stages)
The real-time collaboration study and the follow-up study
follow a similar study protocol. We invited each participant for
a 90-minute lab session. Before the study, participants reported
their data science backgrounds on a pre-task questionnaire.
Each participant was given a 15–20-minute training session

Figure 5. Chat Panel. When selecting one message, a snapshot button
(see A) will navigate users to the snapshot of the notebook. When select-
ing two messages, a diff button (see C) will navigate users to the diff view
comparing two snapshots (see Figure 4). Users can manually refine the
links using the edit button (see B).

on the tool, with example tasks to complete. After the study,
we conducted a 10–15-minute semi-structured interview with
each participant. We collected data from server-side usage
logs, screen recordings, and post-task interviews. We also
took observational notes during the study.

Participants (for Both Stages)
We reached out to data science programs and interest groups
on campus, filtering qualified participants based on the courses
they had taken and other data science-related experience. Over-
all, qualified participants were familiar with Jupyter Notebook,
Python, and common exploratory data analysis packages (e.g.,
Pandas, NumPy). Most of them had experience of collaborat-
ing on an exploratory data analysis project.

We recruited 32 participants in total (11 female, 20 male, 1
non-binary, average age = 25). Participants were from a variety
of data science-related programs (8 undergraduate students, 5
master’s students, 18 Ph.D. students, and 1 full-time employee
who recently graduated; students’ majors included computer
science, information science, health information, statistics,
and economics).

Based on participants’ prior knowledge, we rated their experi-
ence level as beginner‡ (n=6), intermediate§ (n=10), or expert¶

(n=16). We randomly assigned participants into one of the
two stages with a balanced distribution of experience level.
There was no overlap in participants across study stages. We
compensated participants with $25 USD gift cards.

Stage 1: Real-time Collaboration
In Stage 1, we investigated the perceived usability of Callisto
for real-time collaboration. We observed eight participants
‡Beginner: has taken 1–2 data science classes, basic experience with
Pandas and Python, but little experience with data science problems
§Intermediate: limited experience with data science problems
¶Expert: is familiar with libraries frequently used in data science,
and very experienced in solving data science problems

Paper 611 Page 7

S1 Real-time Collaboration (4 pairs) x σ

Cell Edits 64.50 34.57
Messages 101.00 76.40
Creating Pointers 7.25 1.71
Making Annotations 11.25 7.45
Erroneous References 8 15.3
S2 Follow-up (10 individuals) x σ

Clicking on Pointers 8.40 4.51
Viewing Notebook Snapshot 10.20 5.45
Viewing Notebook Diffs 15.30 7.60
Inspecting Cells for Curated Messages 44.80 48.93
Inspecting Messages for Related Cells 40.00 20.95

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Table 4. Server-side Usage Logs (mean: x, standard deviation: σ): (1)
Most contextual links were created by inferred references; (2) The two
navigating features were used equally to understand past decisions.

(P1–P8) working in pairs to solve a data science task together
using the full version of Callisto. Participants were invited
to the study site at the same time and sat in separate rooms.
We informed participants at the outset that they would not
have enough time to complete the task and a new collaborator
would take over the remaining work.

The data science task was modified from a Kaggle competi-
tion (predicting house sale price). To scope the task within
the study duration, we asked participants to only perform ex-
ploratory data analysis. We provided a basic framework of the
notebook for participants to begin with, as well as example
API usage code for common data analysis packages.

Overall Usage
As Table 4 shows, each group edited the notebook an average
of 64.50 times during the 45-minute exploration. We recorded
a cell editing event when a cell being executed was modified
from its last execution. Participants frequently used the anno-
tation feature (11.25 times per group) when discussing outputs.
However, not all annotations were used for creating references.
In fact, only 7% of the messages contained references that
participants manually created. Most of these manually created
references (26 out of 29) were cell pointers.

Creating References (Manual and Automatically Inferred)
In most cases where participants manually created a reference
in a message, they used cell pointers with the default textual
description “cell”. Participants gave a variety of reasons for
using cell pointers over other pointers, including that discus-
sions are often not around a particular piece of code, and that
pointing to a cell requires less effort than creating other point-
ers. Participants also mentioned that the ability to check their
collaborator’s cursor served the same function as the pointer
when they were talking about code cells in real time:

I can know my collaborator’s cursor so it is easy to know
what she is talking about. So we didn’t use much refer-
ences, only a few cell links. (P3, expert)

We identified five cases where participants could have used
references to make their communication more efficient. For
example, one participant could have directly pointed to a num-
ber in the table by creating an annotation reference, but instead

he described it as “the two values with bigger GrLivArea as
rows with IDs 1182 & 691”. Worse still, some participants
described locations relative to their field of view, which fur-
ther increased the difficulty for new collaborators to parse the
message (“If you scroll up to the cell above, it looks like the
ID is always one higher than the Pandas index.”).

Because participants created relatively few manual references
(7.25 out of 101 messages on average per group), Callisto’s
ability to automatically infer relationships between messages
and notebook cells is crucial. In order to understand how
well Callisto’s reference inference feature works, we manually
checked the messages and found that 92% of messages were
connected to the correct context (only a total of eight messages
were mismatched with the inferred cell references).

Annotations Aid Communication
Participants used the annotation feature frequently, and we
investigated its popularity in the post-task interview. Most
participants agreed that the annotation feature reduced com-
munication costs:

A lot of our discussions are about the graphs. I really
like the ability to draw on the graphs so we knew what
exactly we were talking about. (P4, intermediate)

[When using Slack] I have to make a screenshot and save
it on desktop. I do not like saving too many images on
the desktop so I like this tool. (P1, beginner)

Stage 2: Following up with the Collaboration Process
In Stage 2, we evaluated how a new collaborator better fol-
lowed up with an ongoing collaborative project. We compared
two versions of Callisto in this stage: a lite version where no
contextual links are captured and stored, only basic collabora-
tion features are enabled; and the full version.

Content Preparation
We designed the assets (the notebook history, chat messages,
and their connections) for the “ongoing collaborative project”
by merging and modifying the collaboration assets produced
in Stage 1. The combined project used in Stage 2 contained
42 cell edits, 132 messages, and 19 manual references. In
the lite version of Callisto, we replaced the manual references
with a textual description of the location in the notebook. To
ensure these textual descriptions were realistic, we observed
two more groups (in addition to the pairs described in the
previous section) doing tasks in Stage 1 using the lite version.
We identified several strategies that participants used to point
to notebook elements, and replaced the references based on the
three most common strategies: cell execution number, pasting
the content directly, and describing the location of the content.

Study Setup
We recruited 20 participants and randomly assigned them to
one of the two conditions: the experimental condition using
Callisto, and the control condition using the lite version. We
informed participants that the previous collaborators (Alice
and Bob) were in a rush and did not finish the exploration.

Paper 611 Page 8

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Callisto Control

x 30.05 23.75Questionnaire Score*
σ 6.27 3.85

x 1577.21 1416.05Time (sec)
σ 237.35 320.28

x 5.00 5.26Self-reported Confidence
σ 0.66 1.16

Table 5. Comparing the outcomes from the second stage of the evalua-
tion (mean: x, standard deviation: σ). Callisto helps new collaborators
achieve a better understanding of an ongoing project.

We asked participants to explore the notebook and answer five
questions|| related to Alice and Bob’s prior analysis. The ques-
tions were designed using Revised Bloom’s Taxonomy (RBT)
to assess participants’ understanding [28]. For example, out-
lining features that Alice and Bob have explored, and sum-
marizing their findings about the distribution of sale price.
Participants had six minutes to read details from the note-
book and answer each question. We collected the answers and
measured time and participants’ self-reported confidence level
(on a seven-point Likert scale) for each question. At the end,
we gave participants 10 minutes to use the tool in depth to
follow up on their work (e.g., clean the notebook, add more
explanations, or continue exploring the problem).

To assess how well participants understood the ongoing collab-
oration process, we designed a rubric to grade their answers
to the five questions (maximum score = 50). Two external
data science experts independently graded their answers. We
performed a Pearson correlation coefficient test and found a
strong agreement on the rating (r = 0.97, p < 0.001).

Overall Performance
As Table 5 shows, participants in the experimental condition
(avg = 30.05) achieved a higher score than participants in
the control condition (avg = 23.75), with a two-sample t-test
suggesting that the difference is significant (p = 0.014). There
was no significant difference in the time costs or the self-
reported confidence level between the two conditions.

To investigate why participants performed better in the ex-
perimental condition, we studied their usage logs and screen
recordings. As Table 4 shows, participants in the experimental
condition used the two navigating features in Callisto equally
to understand past decisions and discussions.

Understanding Discussions Around the Cell
Participants in both conditions reported a need to check the
chat messages even though the notebook already contained
some code comments and explanatory texts. They complained
that the code comments were not well written:

Some comments are hard to parse. (P22, expert, experi-
mental condition)

They could have used the markdown cells more to con-
clude the results. (P16, expert, experimental condition)

||See supplementary materials for the full rubric and set of questions.

Comparatively, participants in the control condition found it
difficult to follow the chat messages due to the sheer quan-
tity. We observed that three participants in the control condi-
tion misaligned the chat messages with the notebook content
when answering a question about how Alice and Bob analyzed
the linear relationship between SalePrice and YearBuilt.
They answered the question incorrectly because they de-
scribed the discussions about the linear relationship between
SalePrice and another feature (GrLivArea, which appeared
earlier in the analysis). Two participants in the control con-
dition wanted chat messages to be mapped with notebook
content:

I wish there is a way to attach the messages to the cell that
they discussed. It will save me time. (P30, intermediate,
control condition)

While participants in the experimental condition benefited
from the established connection between messages and note-
book, they further reported the filter feature helpful in curating
discussions around cells. On average, each participant in-
spected cells 44.8 times to filter related messages, checking
14.9 unique cells. In addition, we observed that most partici-
pants (9 out of 10) preferred to keep the filtering mode enabled
as they dove deeper in the notebook:

Because the chat is so long, I think it is not useful until I
filter it down. (P18, expert, experimental condition)

Understanding the Context of the Message
We observed participants used the contextual links in Cal-
listo the other way (from messages to notebook content) to
understand the context of a message. Participants inspected
messages 40 times to check related cells in the final notebook,
or perform further actions such as checking snapshots (10.2
times) or comparing diffs (15.3 times). 27.4 unique messages
were inspected by each participant, indicating that participants
may go back and forth to check messages and related cells.

We further investigated why checking and comparing note-
book edits from messages helped participants better under-
stand the analysis from observation notes and screen record-
ings. We illustrated one interesting case of how participants
approached the answers in the questionnaire differently. One
question asked how Alice and Bob analyzed the outliers in
the GrLivArea. Participants from the experimental condition
were able to find all relevant analyses with two alternative
hypotheses, where the code cell for testing one hypothesis was
overwritten by the code cell that tested the second hypothesis.
However, most participants from the control condition only
reported the second hypothesis on the final notebook.

In addition, Callisto helped participants better understand how
a code change resulted in an output change. As shown in Fig-
ure 4, Alice and Bob applied a log transformation to correct
the distribution of SalePrice, only commenting vaguely on
the results in the chat (“the result looks much better”). Par-
ticipants in the experimental condition were able to compare
the notebook diffs between this message and the one above,
gaining an intuitive comparison of how the output changed
from the diff view (see Figure 4.B). In contrast, participants
in the control condition needed to first guess what might have

Paper 611 Page 9

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

changed in the notebook, then revert changes (e.g., remove the
np.log) and execute the cell to compare the output.

DISCUSSION
Reflecting on Callisto’s design, we discuss how future tool
builders of computational notebooks and data science re-
searchers can build on our work.

Reducing the Burden of Communication
Our findings revealed that participants in the real-time col-
laboration setting are hesitant to make accurate and polished
references, or to create references, even if the interaction takes
only two clicks. This corresponds to studies in other domains
that report user reluctance to write quality annotations or com-
ments during active work [7, 31, 6]. Future work should
consider optimizing this process by designing shortcuts or pro-
viding suggested references inferred by edits in the notebook
(e.g., a newly added annotation).

As prior work [42] shows, data scientists use a variety of com-
munication tools, including high-bandwidth communication
channels such as video conferencing or face-to-face meetings.
Capturing information exchanged in these channels is difficult
yet important to reduce the burden of text-based communica-
tion. It is worth studying the benefits and challenges of us-
ing different communication channels in data scientists’ daily
work to leverage past discussions for a better understanding of
shared work.

In addition, we believe similar techniques could work in other
domains where remote collaborators co-design a shared arti-
fact that changes over time, as long as the reference types are
domain appropriate. For example, Callisto’s features could be
adapted for a shared CAD tool where designers collaborate
on a 3D model, but our results and designs may not apply
for highly modular work (such as multiple authors writing
different chapters of a textbook with minimal interaction).

Improving the Accuracy of Contextual Links
As most of the messages (around 93%) relied on inferred
references, we believe that it is important to explore ways to
further improve the accuracy and recall of inferred references.
Mismatched contextual links happened for several reasons. If
a message describes a future action, the relevant cell may not
exist when the message is sent. In this case, we may consider
using Natural Language Processing (NLP) techniques to infer
whether the message should be connected to the cell edited
before sending the message or the cell edited after sending
the message. Another possible reason is that a message might
reference a cell the writer’s collaborator is working on, instead
of the one the writer is working on. It is worth exploring
other strategies (e.g., considering common cells that nearby
messages connect to) to automatically infer the context.

Towards Generating Meta-Narratives
New collaborators not only need to understand the computa-
tional narrative itself but also how that narrative evolved—the
meta-narrative behind the narrative. Callisto is a representa-
tion of meta-narratives for computational notebooks. Creating
an explicit meta-narrative object can be useful for onboarding

new collaborators during the data-exploration process, as we
found in our evaluation. These meta-narratives could also
be useful in education; many programming lectures involve
creating a form of meta-narrative. They could also be used in
“traditional” writing. Future research could explore alternative
representations for meta-narratives for a variety of domains.

Limitations
Callisto is designed and evaluated in the scope of within-
notebook collaboration, where collaborators work in the same
notebook and treat the final narrative as an end goal. The
setup of the formative study is designed to encourage real-
time chatting and collaboration, which may not be an accurate
representation of most collaboration and communication sce-
narios. In addition, our in-lab evaluation contains several
limits to external validity: participants are all students from
the authors’ home institution; participants may not be profi-
cient enough in Callisto given the short training time; we only
evaluated one type of data science problem and provided the
framework of the notebook rather than asking them to start
from scratch.

SYSTEM IMPLEMENTATION
Callisto** consists of two Jupyter Notebook extensions—one
small extension for Jupyter’s file browser (to make it easier to
join shared notebooks) and the “main” extension for Jupyter
Notebooks (Figure 2)—and a Node.js backend. Callisto keeps
collaborators in sync (including notebook content, chat, lists
of collaborators, and runtime state) through Operational Trans-
formations (OTs), as implemented through ShareDB [1]. To
maintain connections between messages and cells, Callisto
tracks the edit history through the lifetime of the notebook and
stores a unique id in the metadata of each cell, which stays
constant as cells are inserted, deleted, and rearranged.

CONCLUSION
In conclusion, we have proposed the design of Callisto to
leverage valuable chat messages in collaborative data science.
Our two-stage evaluation study with 32 data science students
confirmed that Callisto eases new-collaborator onboarding
by helping them understand the design rationales of the note-
book’s authors. In particular, Callisto successfully captures
contextual links during the real-time collaborative creation
of the notebook without hindering exploration, while the es-
tablishment of contextual links and the set of interactions for
navigating the notebook significantly improve new notebook
collaborators’ understanding of past discussions and decisions.

ACKNOWLEDGMENTS
We thank all of our participants and our reviewers for their
valuable feedback. We also thank the Michigan Institute for
Data Science (MIDAS). This material is based upon work
supported by the National Science Foundation under Grant
Numbers IIS 1755908 and EHR 1915515.

REFERENCES
[1] 2013. ShareDB. (2013).

https://github.com/share/sharedb.
**Callisto’s source is available at github.com/littleaprilfool/callisto

Paper 611 Page 10

https://github.com/share/sharedb
https://github.com/littleaprilfool/callisto

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[2] 2019. Autolinked references and URLs - GitHub Help.
(2019). https://help.github.com/en/articles/
autolinked-references-and-urls

[3] 2019. Deepnote. (2019). https://www.deepnote.com.

[4] 2019. Google Colaboratory. (2019).
https://colab.research.google.com.

[5] 2019. JSFiddle. (2019). https://jsfiddle.net.

[6] Adrian Bachmann and Abraham Bernstein. 2009.
Software process data quality and characteristics: a
historical view on open and closed source projects. In
Proceedings of the joint international and annual
ERCIM workshops on Principles of software evolution
(IWPSE) and software evolution (Evol) workshops.
ACM, 119–128.

[7] Raymond PL Buse and Westley Weimer. 2010.
Automatically documenting program changes.. In ASE,
Vol. 10. 33–42.

[8] Yan Chen, Sang Won Lee, Yin Xie, YiWei Yang,
Walter S Lasecki, and Steve Oney. 2017. Codeon:
On-Demand Software Development Assistance. In
Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems. ACM.

[9] Parmit K. Chilana, Nathaniel Hudson, Srinjita Bhaduri,
Prashant Shashikumar, and Shaun Kane. 2018.
Supporting Remote Real-Time Expert Help:
Opportunities and Challenges for Novice 3D Modelers.
In 2018 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). 157–166. DOI:
http://dx.doi.org/10.1109/VLHCC.2018.8506568

[10] Parmit K. Chilana, Amy J. Ko, and Jacob O. Wobbrock.
2012. LemonAid: Selection-based Crowdsourced
Contextual Help for Web Applications. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’12). ACM, New York, NY,
USA, 1549–1558. DOI:
http://dx.doi.org/10.1145/2207676.2208620

[11] Soon Hau Chua, Toni-Jan Keith Palma Monserrat,
Dongwook Yoon, Juho Kim, and Shengdong Zhao.
2017. Korero: Facilitating Complex Referencing of
Visual Materials in Asynchronous Discussion Interface.
Proc. ACM Hum.-Comput. Interact. 1, CSCW, Article
34 (Dec. 2017), 19 pages. DOI:
http://dx.doi.org/10.1145/3134669

[12] Sarah D’Angelo and Andrew Begel. 2017. Improving
communication between pair programmers using shared
gaze awareness. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems.
ACM, 6245–6290.

[13] Susan R Fussell and Robert M Krauss. 1992.
Coordination of knowledge in communication: Effects
of speakers’ assumptions about what others know.
Journal of personality and Social Psychology 62, 3
(1992), 378.

[14] Susan R Fussell, Robert E Kraut, and Jane Siegel. 2000.
Coordination of communication: Effects of shared
visual context on collaborative work. In Proceedings of
the 2000 ACM conference on Computer supported
cooperative work. ACM, 21–30.

[15] Philip J. Guo. 2012. Software tools to facilitate research
programming. Ph.D. Dissertation. Stanford University
Stanford, CA.

[16] Pavel Gurevich, Joel Lanir, Benjamin Cohen, and Ran
Stone. 2012. TeleAdvisor: A Versatile Augmented
Reality Tool for Remote Assistance. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’12). ACM, New York, NY,
USA, 619–622. DOI:
http://dx.doi.org/10.1145/2207676.2207763

[17] David Haney. 2014. Introducing Runnable JavaScript,
CSS, and HTML Code Snippets. (2014). Retrieved
September 15, 2019 from
https://stackoverflow.blog/2014/09/16/introducing-

runnable-javascript-css-and-html-code-snippets/.

[18] Andrew Head, Fred Hohman, Titus Barik, Steven M.
Drucker, and Robert DeLine. 2019. Managing Messes in
Computational Notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing
Systems (CHI ’19). ACM, New York, NY, USA, Article
270, 12 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300500

[19] Project Jupyter. 2015. Project Jupyter: Computational
Narratives as the Engine of Collaborative Data Science.
(2015). Retrieved September 15, 2019 from
https://blog.jupyter.org/project-jupyter-

computational-narratives-as-the-engine-of-

collaborative-data-science-2b5fb94c3c58.

[20] Mary Beth Kery, Amber Horvath, and Brad Myers.
2017. Variolite: Supporting Exploratory Programming
by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems
(CHI ’17). ACM, New York, NY, USA, 1265–1276.
DOI:http://dx.doi.org/10.1145/3025453.3025626

[21] Mary Beth Kery, Bonnie E. John, Patrick O’Flaherty,
Amber Horvath, and Brad A. Myers. 2019. Towards
Effective Foraging by Data Scientists to Find Past
Analysis Choices. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems
(CHI ’19). ACM, New York, NY, USA, Article 92, 13
pages. DOI:http://dx.doi.org/10.1145/3290605.3300322

[22] Mary Beth Kery and Brad A. Myers. 2017. Exploring
exploratory programming. In 2017 IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC) (2017-10). 25–29. DOI:
http://dx.doi.org/10.1109/VLHCC.2017.8103446

[23] Mary Beth Kery, Marissa Radensky, Mahima Arya,
Bonnie E. John, and Brad A. Myers. 2018. The Story in
the Notebook: Exploratory Data Science Using a
Literate Programming Tool. In Proceedings of the 2018
CHI Conference on Human Factors in Computing

Paper 611 Page 11

https://help.github.com/en/articles/autolinked-references-and-urls
https://help.github.com/en/articles/autolinked-references-and-urls
https://www.deepnote.com
https://colab.research.google.com
https://jsfiddle.net
http://dx.doi.org/10.1109/VLHCC.2018.8506568
http://dx.doi.org/10.1145/2207676.2208620
http://dx.doi.org/10.1145/3134669
http://dx.doi.org/10.1145/2207676.2207763
https://stackoverflow.blog/2014/09/16/introducing-runnable-javascript-css-and-html-code-snippets/
https://stackoverflow.blog/2014/09/16/introducing-runnable-javascript-css-and-html-code-snippets/
http://dx.doi.org/10.1145/3290605.3300500
https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58
https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58
https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58
http://dx.doi.org/10.1145/3025453.3025626
http://dx.doi.org/10.1145/3290605.3300322
http://dx.doi.org/10.1109/VLHCC.2017.8103446

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Systems (CHI ’18). ACM, New York, NY, USA, Article
174, 11 pages. DOI:
http://dx.doi.org/10.1145/3173574.3173748

[24] Miryung Kim, Thomas Zimmermann, Robert DeLine,
and Andrew Begel. 2016. The Emerging Role of Data
Scientists on Software Development Teams. In
Proceedings of the 38th International Conference on
Software Engineering (2016) (ICSE ’16). ACM, 96–107.
DOI:http://dx.doi.org/10.1145/2884781.2884783

[25] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando
Pérez, Brian E Granger, Matthias Bussonnier, Jonathan
Frederic, Kyle Kelley, Jessica B Hamrick, Jason Grout,
Sylvain Corlay, and others. 2016. Jupyter Notebooks-a
publishing format for reproducible computational
workflows.. In ELPUB. 87–90.

[26] Donald E. Knuth. 1984. Literate Programming. Comput.
J. 27, 2 (1984), 97–111. DOI:
http://dx.doi.org/10.1093/comjnl/27.2.97

[27] Laura Koesten, Emilia Kacprzak, Jeni Tennison, and
Elena Simperl. 2019. Collaborative Practices with
Structured Data: Do Tools Support What Users Need?.
In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems (CHI ’19). ACM, New
York, NY, USA, Article 100, 14 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300330

[28] David R Krathwohl. 2002. A revision of Bloom’s
taxonomy: An overview. Theory into practice 41, 4
(2002), 212–218.

[29] Sean Kross and Philip J. Guo. 2019. Practitioners
Teaching Data Science in Industry and Academia:
Expectations, Workflows, and Challenges. In
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. DOI:
http://dx.doi.org/10.1145/3290605.3300493

[30] Ching Liu, Juho Kim, and Hao-Chuan Wang. 2018.
ConceptScape: Collaborative Concept Mapping for
Video Learning. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems
(CHI ’18). ACM, New York, NY, USA, Article 387, 12
pages. DOI:http://dx.doi.org/10.1145/3173574.3173961

[31] Walid Maalej and Hans-Jorg Happel. 2009. From work
to word: How do software developers describe their
work?. In 2009 6th IEEE International Working
Conference on Mining Software Repositories. IEEE,
121–130.

[32] Michael Muller, Ingrid Lange, Dakuo Wang, David
Piorkowski, Jason Tsay, Q. Vera Liao, Casey Dugan,
and Thomas Erickson. 2019. How Data Science Workers
Work with Data: Discovery, Capture, Curation, Design,
Creation. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems (CHI ’19). ACM,
New York, NY, USA, Article 126, 15 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300356

[33] Steve Oney, Christopher Brooks, and Paul Resnick.
2018. Creating Guided Code Explanations with chat.
codes. Proceedings of the ACM on Human-Computer
Interaction 2, CSCW (2018), 131.

[34] Soya Park, Amy X. Zhang, and David R. Karger. 2018.
Post-literate Programming: Linking Discussion and
Code in Software Development Teams. In The 31st
Annual ACM Symposium on User Interface Software
and Technology Adjunct Proceedings (UIST ’18
Adjunct). ACM, New York, NY, USA, 51–53. DOI:
http://dx.doi.org/10.1145/3266037.3266098

[35] Samir Passi and Steven J. Jackson. 2018. Trust in Data
Science: Collaboration, Translation, and Accountability
in Corporate Data Science Projects. 2 (2018),
136:1–136:28. Issue CSCW. DOI:
http://dx.doi.org/10.1145/3274405

[36] Jeffrey M. Perkel. 2018. Why Jupyter is data scientists’
computational notebook of choice. Nature 563 (2018),
145. DOI:
http://dx.doi.org/10.1038/d41586-018-07196-1

[37] Bernadette M. Randles, Irene V. Pasquetto, Milena S.
Golshan, and Christine L. Borgman. 2017. Using the
Jupyter Notebook as a Tool for Open Science: An
Empirical Study. In 2017 ACM/IEEE Joint Conference
on Digital Libraries (JCDL). 1–2. DOI:
http://dx.doi.org/10.1109/JCDL.2017.7991618

[38] Adam Rule, Ian Drosos, Aurélien Tabard, and James D.
Hollan. 2018a. Aiding Collaborative Reuse of
Computational Notebooks with Annotated Cell Folding.
Proc. ACM Hum.-Comput. Interact. 2 (2018),
150:1–150:12. Issue CSCW. DOI:
http://dx.doi.org/10.1145/3274419

[39] Adam Rule, Aurélien Tabard, and James D. Hollan.
2018b. Exploration and Explanation in Computational
Notebooks. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (CHI ’18).
ACM, New York, NY, USA, Article 32, 12 pages. DOI:
http://dx.doi.org/10.1145/3173574.3173606

[40] Adam Carl Rule. 2018. Design and Use of
Computational Notebooks. Ph.D. Dissertation.
University of California San Diego.

[41] James Tam and Saul Greenberg. 2006. A Framework for
Asynchronous Change Awareness in Collaborative
Documents and Workspaces. Int. J. Hum.-Comput. Stud.
64, 7 (July 2006), 583–598. DOI:
http://dx.doi.org/10.1016/j.ijhcs.2006.02.004

[42] April Yi Wang, Anant Mittal, Christopher Brooks, and
Steve Oney. 2019. How Data Scientists Use
Computational Notebooks for Real-Time Collaboration.
3 (2019), 39:1–39:30. Issue CSCW. DOI:
http://dx.doi.org/10.1145/3359141

[43] Matin Yarmand, Dongwook Yoon, Samuel Dodson, Ido
Roll, and Sidney S. Fels. 2019. “Can You Believe
[1:21]?!”: Content and Time-Based Reference Patterns
in Video Comments. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems
(CHI ’19). ACM, New York, NY, USA, Article 489, 12
pages. DOI:http://dx.doi.org/10.1145/3290605.3300719

Paper 611 Page 12

http://dx.doi.org/10.1145/3173574.3173748
http://dx.doi.org/10.1145/2884781.2884783
http://dx.doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.1145/3290605.3300330
http://dx.doi.org/10.1145/3290605.3300493
http://dx.doi.org/10.1145/3173574.3173961
http://dx.doi.org/10.1145/3290605.3300356
http://dx.doi.org/10.1145/3266037.3266098
http://dx.doi.org/10.1145/3274405
http://dx.doi.org/10.1038/d41586-018-07196-1
http://dx.doi.org/10.1109/JCDL.2017.7991618
http://dx.doi.org/10.1145/3274419
http://dx.doi.org/10.1145/3173574.3173606
http://dx.doi.org/10.1016/j.ijhcs.2006.02.004
http://dx.doi.org/10.1145/3359141
http://dx.doi.org/10.1145/3290605.3300719

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[44] Amy X. Zhang and Justin Cranshaw. 2018. Making
Sense of Group Chat Through Collaborative Tagging
and Summarization. Proc. ACM Hum.-Comput. Interact.
2, CSCW, Article 196 (Nov. 2018), 27 pages. DOI:
http://dx.doi.org/10.1145/3274465

[45] Sacha Zyto, David Karger, Mark Ackerman, and Sanjoy
Mahajan. 2012. Successful Classroom Deployment of a
Social Document Annotation System. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’12). ACM, New York, NY,
USA, 1883–1892. DOI:
http://dx.doi.org/10.1145/2207676.2208326

Paper 611 Page 13

http://dx.doi.org/10.1145/3274465
http://dx.doi.org/10.1145/2207676.2208326

	Introduction
	Related Work
	Computational Notebooks
	Linking Code and Discussion
	Creating Contextual References

	Formative Study
	Method
	Data Analysis
	Results
	Purpose
	Relevance
	Granularity

	Implications

	Design of Callisto
	Enabling Sharing and Real-Time Collaboration
	Basic Collaboration Features
	Shared Runtime and Outputs
	Synchronous Chat
	Edit and Version History

	Connecting Messages and Notebook Content
	Automatically Inferring References from Context

	Navigating Messages and Notebook Content
	From Messages to Notebook Content
	From Notebook Content to Messages

	Evaluation
	General Study Protocol (for Both Stages)
	Participants (for Both Stages)
	Stage 1: Real-time Collaboration
	Overall Usage
	Creating References (Manual and Automatically Inferred)
	Annotations Aid Communication

	Stage 2: Following up with the Collaboration Process
	Content Preparation
	Study Setup
	Overall Performance
	Understanding Discussions Around the Cell
	Understanding the Context of the Message

	Discussion
	Reducing the Burden of Communication
	Improving the Accuracy of Contextual Links
	Towards Generating Meta-Narratives
	Limitations

	System Implementation
	Conclusion
	Acknowledgments
	References

