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Abstract. AI-supported tools can help learners overcome challenges in
programming education by providing adaptive assistance. However, ex-
isting research often focuses on individual tools rather than deriving
broader design recommendations. A key challenge in designing these
systems is balancing learner control with system-driven guidance. To ex-
plore user preferences for AI-supported programming learning tools, we
conducted a participatory design study with 15 undergraduate novice
programmers and 10 instructors to gather insights on their desired help
features and control preferences, as well as a follow-up survey with 172
introductory programming students.
Our qualitative findings show that learners prefer help that is encourag-
ing, incorporates visual aids, and includes peer-related insights, whereas
instructors prioritize scaffolding that reflects learners’ progress and rein-
forces best practices. Both groups favor shared control, though learners
generally prefer more autonomy, while instructors lean toward greater
system guidance to prevent cognitive overload. Additionally, our inter-
views revealed individual differences in control preferences.
Based on our findings, we propose design guidelines for AI-supported
programming tools, particularly regarding user-centered help features
and adaptive control mechanisms. Our work contributes to the human-
centered design of AI-supported learning environments by informing the
development of systems that effectively balance autonomy and guidance,
enhancing AI-supported educational tools for programming and beyond.

1 Introduction
Programming is an important skill, but learning to program is not easy [25].
To address this problem, researchers have designed various tools to provide pro-
gramming help such as intelligent tutors [12], programming games [22], and prac-
tice environments with adaptive hints and explanations [14, 27]. AI-supported
tools, in particular, have shown promise in offering personalized guidance and
adaptive feedback [9, 17, 20, 30]. However, most prior research has focused on
designing and evaluating individual tools rather than exploring broader design
guidelines regarding the needs and expectations of novice learners and instruc-
tors. In this work, we focus our research on AI-supported learning tools that
provide on-demand help when learners are writing code.

To assist future work in better designing learner-centered AI-supported pro-
gramming learning tools, we investigate the desired help features, referring
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to the abstract qualities of help that users find beneficial. Our first research
question asks: RQ1: What help features do novice learners and instruc-
tors desire from an adaptive learning tool that provides on-demand
programming help?

A key challenge in AI-supported adaptive learning systems is determining
how much decision-making power and responsibility should be given to the
learner versus the system [15]. If the system has full control, learners might
feel frustrated when the system’s intervention does not align with their expecta-
tions; if the learners have full control, they might be overwhelmed [15, 26]. While
some prior work has investigated the impact of control on learners [11, 34], little
research has explored how to balance control in the context of programming ed-
ucation, particularly from the perspectives of both learners and instructors. In
this paper, we refer to this shared control dynamic as learner-system control.

AI-supported learning systems can provide adaptive assistance in many di-
mensions, including: (1) the types of help provided (e.g., hints, worked examples,
and visualizations), and (2) the level of help, which refers to the amount of as-
sistance provided (e.g., high-level subgoal labels versus a detailed breakdown
of sub-subgoals). Unlike the abstract help features described in RQ1, we use
types of help to refer to the concrete ways of providing scaffolding. Despite
the growing number of AI-supported programming tools [20], little research has
explored how to balance learner-system control across various types and levels
of help. To address this gap, we propose the second research question: RQ2:
What are novice learners’ and instructors’ preferences for learner-
system control?

To answer these questions, we conducted a participatory design study with
both undergraduate novice learners and programming instructors. We created
realistic programming practice scenarios for learners and instructional scenarios
for instructors, asked them to design features for an “ideal smart programming
help” tool to highlight the desired help features, and interviewed them regard-
ing their preferred learner-system control mechanisms. Based on the findings
from the first two studies, we administered a survey on the abstract help features
and learner-system control mechanisms and analyzed responses from 172 under-
graduate students. Finally, we present our findings and present design guidelines
for AI-supported programming practice tools, especially for the learner-system
control mechanisms.

2 Related Work
Learner-System Control Dynamics. A key challenge in adaptive learning
is determining who controls the adaptation process: does the system make all
decisions based on a student model, or does the learner control their learning
experience [15]? The former characterizes an adaptive system, while the latter
characterizes an adaptable system [24]. AI-supported learning systems can be
placed on a spectrum between these extremes, depending on the balance of
control between the system and its users [15, 26]. A fully adaptive system can be
problematic because its user model may misrepresent the learner [7], resulting
in mismatches between system decisions and learner expectations and causing
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frustration [15]. Conversely, fully adaptable systems can overwhelm learners at
times, particularly novices, by providing too many choices [15].

The AIED community has studied ‘learner control,’ often with a focus on
self-regulation and motivation [33]. Empirical studies have examined how learner
control influences learning outcomes and behavior [5, 11, 34]. Corbalan et al.[11]
found that students who shared control with the system engaged more deeply
in tasks than those in a system-controlled condition; Xie et al.[34] demonstrated
that granting students agency in a programming context increased engagement;
Recent research in intelligent tutoring systems (ITS) [5] indicates that learners
highly value control as a means to enhance their learning experience and self-
regulation. While prior work offers valuable insights into control dynamics, these
studies are often system-specific and have rarely investigated the preferences
of both learners and instructors. To fill this gap, our work is one of the first
to directly study learners’ and instructors’ preferences using a design-focused
approach, deriving guidelines for AIED systems in general.

Recent advances in AI, particularly in large language models, have enabled
more personalized learning support [1, 3, 35]. However, as Brusilovsky [8] pointed
out, despite growing interest in human-AI collaboration, “the field of AIED is
now lagging behind the work on user control in ‘big AI’ ”. To emphasize the col-
laborative decision-making process between learners and AI-supported systems,
we refer to these evolving control dynamics as learner-system control.
Participatory Design in Educational Technology Participatory design
(PD) comprises a set of human-centered methods that actively involve stake-
holders in the design process [13]. Engaging instructors leverages their domain
expertise in teaching; however, involving learners is equally crucial [18]. PD
methods have been used to create educational technologies in many fields, in-
cluding math, history, and social skills [4, 6, 16, 23, 28]. In computing education,
rather than focusing on designing tools and systems for learners, PD methods
have primarily been used to develop curricula for specific populations, such as
to foster computational thinking skills for K-12 learners [29] and to create cul-
turally relevant curriculum [10]. Other studies have directly integrated PD as
learning activities for students [2, 21]. Our work is among the first to employ
PD methods that directly engage both instructors and learners in the design
process of AI-supported programming learning tools.

3 Participatory Design with Learners and Instructors
We conducted participatory design (PD) sessions with 15 undergraduate novice
programmers and 10 instructors for both undergraduate and graduate program-
ming courses. All studies were conducted virtually via Zoom, received approval
from the local institutional review board, and obtained participant consent.
PD with Learners We recruited 15 undergraduate participants who had ei-
ther recently completed an introductory programming course or were enrolled
to take it in the upcoming semester. Prior to the PD sessions, participants filled
out a demographic survey that included a standard self-efficacy survey for com-
puting [32], consisting of five questions rated on 7-point Likert scales (with 1
representing the lowest and 7 the highest).
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We established a context designed to elicit participants’ help-seeking be-
haviors. First, learners were asked to attempt one or two introductory Python
programming problems using a web interface (Fig. 1a) that allowed them to
type and execute their code, view error messages from the Python interpreter,
and receive unit test results. The interface also featured a help button labeled
“Give me a little help with this?” that was non-functional. Participants were
instructed to click the button when they desired assistance from the program-
ming tool, which was designed to deliver the “ideal” help. When they clicked the
button, the researcher would: (1) inquire about the reason for the learner’s help
request, (2) provide tutoring to assist in resolving the current issue, and (3) ask
the learner to retrospectively describe the “ideal” help they would have preferred
from the tool in the absence of a human tutor. During the design brainstorming
process, the researcher presented learners with common methods of providing
help in existing programming practice tools (fig. 1b).

(a)

Variations of hints: 
- “You can ….”
- “Consider ….”

Subgoal style hints:
- “First, do ….

Then, do….
Finally, do…”

Virtual Tutor (chatGPT style):
      “Please ask me a question”

Reading Material:
“Read this page/documentation…”

“You are failing at xxx test cases…”
“Here are the common reasons…”

Visualizations to step through code:

“We filled in one line of code for you…”

Drag-and-drop Problem

Mini Drag-and-drop Problem

Mix and match / create 
new ways of help!
e.g. 
mini drag-and-drop + writing code

(b)

Fig. 1: (a): An example problem in the interface, with a help button on top. (b):
Examples of different types of help, provided as inspirations for PD sessions.

Then, the researcher interviewed the participants for their desired learner-
system control model for the programming tool. The participants used an
interface design tool to help articulate their desired design. Learners were asked
to consider two dimensions of the control model: (1) the fading of scaffolding as
they become more experienced (levels of help), and (2) managing their prefer-
ences for the different types of help available (types of help).

PD with instructors We recruited 10 programming course instructors, in-
cluding both faculty members and graduate student instructors. We compiled
learners’ help-seeking events from the PD sessions into a document (screenshots
of learners’ code at the moment they pressed the help button). For each event,
instructors were asked to: (1) describe what the student was most likely to need
help with, and (2) design the ideal support that the tool could provide. In-
structors were also provided with help examples (fig. 1b) as design inspirations.
Finally, the researcher posed the same interview questions regarding the instruc-
tors’ desired learner-system control model for the programming tool, focusing on
both the types of help and the levels of help.
Data Analysis We collected screen and audio recordings for each session. Af-
ter anonymizing and transcribing the recordings, we conducted thematic analy-
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sis [31] on the transcripts, with the help of screen recordings to understand the
context. We developed one codebook for learners and another for instructors.
One researcher, responsible for all observation studies, performed an initial open
coding to develop both codebooks. Subsequently, two researchers independently
coded a subset of the transcripts (two from learners and one from instructors)
using the respective codebooks. The researchers then discussed any discrepan-
cies and refined the codebooks accordingly. Finally, the two researchers indepen-
dently coded two additional transcripts from both learners and instructors. The
two researchers reached a Krippendorf’s alpha above the recommended inter-
rater agreement threshold of α > 0.80 [19] (αlearner = 0.82, αinstructor = 0.81).

4 Findings from Participatory Design Sessions
4.1 Findings from Learners
Fifteen undergraduate participants (L01-L15) participated in the study. Eight
participants were information majors, six were computer science majors, and
one was a business administration major. Thirteen participants had just com-
pleted their sophomore year, and two had just completed their freshman year.
Nine participants identified as male, five as female, and one as non-binary. The
participants’ average self-reported self-efficacy was 5.03 (SD = 1.94) on a 7-point
scale, where 1 indicates the lowest and 7 the highest level.
Help-Seeking Events. On average, participants requested help 1.2 times per
problem, and their reasons for seeking help were categorized into three codes.

When seeking an answer to a specific question. Eight (53%) learners sought
help when they had a specific question, such as requesting clarification on the
problem or an explanation for a syntax error. Learners did not hesitate long
before pressing “help” in this case, knowing that they should receive the ideal
help from the tool in the study. However, they worried that in a real setting,
the tool might fail to accurately recognize their specific questions, potentially
providing irrelevant or incorrect information.

When they attempted to implement a solution, encountered a problem, and
were unable to resolve it despite believing they were on the right track. Nine
(60%) learners were categorized under this reason. They attempted their ideas
but encountered logical or syntactical problems that they failed to resolve, such
as syntax errors or unexpected outputs. Unlike the previous case, they were not
sure what they needed to resolve the issue. They generally delayed requesting
help, because they wanted to continue making attempts: “at least I wanna try
some of those (ways I know) before I ask for help.” (L02) Eventually, when minor
details became too frustrating, they asked for help. They preferred not to receive
a direct answer from the tool, so they could feel that their effort to resolve the
problem paid off.

When unsure of how to begin and in need of guidance. Six (40%) learners
asked for help when they were uncertain about how to start the problem. These
learners were uncertain about the type of help required and had not yet at-
tempted any solution. Although some learners had preliminary ideas, they lacked
confidence or recognized potential flaws in their planned solutions. As a result,
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they decided to request help rather than proceed independently. Learners wanted
more help in this situation, expressing doubt about their ability to complete the
problem, and wanted to make sure they were learning the desired way to code:
“Especially with getting started, I’d like to see how the textbook does it... it gives
that sort of efficient logic, rather than sometimes my inefficient logic still works,
but it’s not always the best way.” (L10)

Preferences for Help Features. Five themes emerged from the PD sessions.
1. Provide feedback relevant to the student code (n=15, 100%). Desired features

include locating syntax or logic errors in their code, explaining failed test
cases, and walking them through their code.

2. Avoid providing the solution directly (n=8, 53%). The learners did not want
the tool to provide a solution directly: “The help that I would be receiv-
ing would almost be meaningless... Because I’m not getting that conceptual
understanding that I need.” (L13)

3. Provide visual components beyond plain text (n=4, 27%). Learners referred
to a variety of things as “visual”, such as Parsons problems (i.e. rearranging
mixed-up code blocks), debuggers, and code tracing tools. While some valued
the graphics, others highlighted the need for visuals that effectively organize
or chunck textual information.

4. Be encouraging (n=2, 13.4%). Learners noted that encouragement is not
only for boosting motivation, but also helps prevent them from doubting
themselves and starting over when their current code is on the right track.

5. Provide information about and from peers (n=2, 13.4%). Desired features
included showing common misconceptions, offering alternative solutions from
peers, and retrieving relevant discussions on Q&A platforms such as Piazza.

Preferences for learner-system control. We identified four distinct models
of learner-system control. Table 1 outlines each model and the implementation
for types of help and levels of help, and fig. 2 provides example interface designs
for implementing the control models.

In our study, learners were categorized based on their preferences regarding
learner-system control. Three (20%) learners preferred the L model, and
were confident about their ability to choose the appropriate type and level of
help. They had strong preferences towards the types and levels of help to receive,
and wanted to manage their learning experience. Eight (53%) learners fell
into the L-S model, wanting to be able to make the decisions, but would like
to receive information provided by the system to assist with their decision. For
instance, participants L02 and L09 favored having predefined ‘go-to’ help types,
yet still wanted system suggestions for individual help events. Two learners
(13%) preferred the S-L model and would like the system to make deci-
sions, but were concerned that the system would fail to provide the types of
help that they wanted. For example, L07 preferred having access to a menu of-
fering access to all available help types, while L12 suggested a button to switch
to an alternative help type if the provided one was unsatisfactory. They were
particularly concerned that the system would take away too much help when
they needed it, therefore making the problem too difficult for them. Only one
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Table 1: Learner-system control models for types of help and levels of help
Model Explanation Controlling Types of Help Controlling Levels of Help
L Learners have full

control and are not
influenced by the AI
system.

The learner selects from a wide
range of help types and receives
only the type they choose, with-
out system recommendations.

The learner manually adjusts
scaffolding, either increasing or
decreasing the level of support
as needed.

L-S learners have ma-
jor control, but the
AI system provides
recommendations.

The learner selects a preferred
help type, while the system sub-
tly suggests alternative types to
assist decision-making.

The learner manually adjusts
scaffolding while the system
provides gentle suggestions
based on the student model.

S-L The AI system has
major control, but
learners can override
system decisions.

The system recommends a help
type based on learner progress,
but the learner can override and
choose a different type.

The system adjusts levels of
scaffolding automatically, but
learners can override these de-
cisions when necessary.

S The AI system has
full control, and the
learners receive help
as determined by the
system.

The learner receives the one
help type recommended by the
system. No learner-initiated ad-
justment is needed or sup-
ported.

The system fully controls scaf-
folding, automatically adjust-
ing support based on learner
progress, without learner over-
rides.

learner (6.7%) preferred the S model. They felt that if the system is smart
enough, they should not need to expend time and effort deciding on the type or
level of help.

Beyond the control models, several additional considerations emerged during
the PD sessions. Some learners (n=2, 13%) worried they might lack self-discipline
at times, ending up abusing their power to control the help provided to them.
Additionally, some learners (n=4, 27%) mentioned that they did not want to
make decisions for every help-seeking event, suggesting that the frequency of
learner-initiated control should be moderated. Due to time constraints, we were
unable to explore this issue in detail.

4.2 Findings from Instructors
Desired help features. Although many instructors offered suggestions similar
to those of the students, two unique recommendations emerged.

1. Promoting good practices. (n=5, 50%). Instructors recommended that the
tool emphasize best programming practices, e.g. following good variable
naming conventions and using print statements for debugging.

2. Provide information on individual learning progress (n=2, 20%). Instructors
proposed features that offer reminders of how learners previously resolved
similar issues. They believe this could help learners feel more confident and
encourage them to connect what they have learned in the past to what they
are currently learning.

Learner-System control. The instructors’ interview responses were coded
using the control model derived from the student interviews. Most instructors
(n = 6, 60%) preferred S-L (mostly AI system control, but learners can override
settings), and three (30%) preferred L-S (mostly learner control, but the system
provides recommendations). Although instructors valued learner control, they
expressed concern that requiring learners to make too many decisions might
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Fig. 2: Example UIs that implement different learner-system control models.

overwhelm them: “It’s important for students to have the ultimate control... [but]
that’s adding more stuff that they need to think about.” (I10)

Interestingly, one participant (I08) proposed a “meta-control” approach, cus-
tomizing to students’ preferences for how much control they would like to have:
“I will say that the most important thing is to understand what students want.
So if the tool understands that the students want to make choices, then just give
them the choices... If the students don’t like making choices, it makes choices for
the student.” (I08)

Additional considerations that are related to learner control were brought up
by the instructors. For example, all instructors (n=10, 100%) mentioned that
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they would need input from students to provide the appropriate help, especially
for determining the type of help, and would value the ability to check in with
students. Three (30%) instructors expressed that they were skeptical about
the accuracy of student models in AI-supported learning tools. As a result,
they believe that the learners should always have the final call on what help
they receive, in case the provided system suggestion is incorrect. Three (30%)
instructors mentioned their concerns that learners might “game the system” and
abuse help, and suggested that the tool should be able to adapt to learners’
motivation in different contexts. For example, I06 noted that for homework
assignments, “most students will like the help that can help them get the full
solution as fast as possible”, whereas when preparing for exams, they are more
inclined to use sophisticated features to enhance learning. Three (30%) instruc-
tors also mentioned that they would like to be able to directly control the
settings for the tool based on what they observe in class or receive insights on
how learners use the tool. Some wanted functionality that allows students to re-
quest help from instructors directly, such as shortcuts for students to send their
current problem and incorrect solution to course communication channels like
Slack and Piazza, or send them to the instructors directly during office hours.

5 Student survey
5.1 Methods
We distributed an optional survey to learners in an introductory programming
course and received 172 responses. The survey consisted of questions for (1)
self-efficacy, (2) perceived importance of help features identified from the PD
sessions, and (3) preferred learner-system control models. The survey began
with a standard self-efficacy survey for computing [32] with five questions on 7-
point Likert scales from 1 (lowest) to 7 (highest). To reduce the length of survey,
we extracted a total of five help features and created 5-point Likert scales for
learners to rate the importance of each feature: (a)(Peer): Gives the learner
information related to their peers, e.g., what other students’ solutions are and
what problems other students are facing; (b)(Encouraging): Be encouraging, e.g.
celebrating their progress on a problem even when not yet passing all test cases;
(c) (Challenging): Challenges the learners, not giving them the answer directly;
(d)(Visual): Has visual components aside from text, e.g. blocks or visualizations;
(e)(Progress) Gives the learner information about their learning progress, e.g.
similar problems they have solved or struggled with before.

We asked learners to select their preferred learner-system control model in
terms of (1) type of help and (2) level of help by describing the implementation
of our proposed models in text.
5.2 Results
On a scale of 1 (low) to 7 (high), learners’ average self-efficacy was 4.7 (SD=1.3).

Perceived importance of help features. Learners rated the perceived im-
portance (1 - not important, 5 -essential) of the abstract help features. The
average importance of providing peer information was 3.53 (SD=0.96), being
encouraging was 3.56 (SD=1.18), being challenging was 3.78 (SD=0.99), having
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visual components was 4.09 (SD=1.03), and providing information about their
learning progress was 4.38 (SD=0.79) (fig. 3).

Fig. 3: Violin plot of learners’ perceived importance of the features.
We calculated the Pearson correlation between each learner’s self-efficacy and

their perceived importance of each of the five features. Only the “challenging the
learner” factor had a significant correlation with self-efficacy (p<.001), and the
correlation was moderately positive (r=0.36), which indicates that this was more
important to those with higher computing self-efficacy.
Preferred learner-system control model. For the preferred learner-system
control for the type of help, 39 (23%) learners preferred L (learner-controlled),
92 (53%) preferred L-S (mainly controlled by the learner), 34 (20%) preferred
S-L (mainly controlled by the AI system), and only 7 (4%) chose S (AI-system-
controlled). The preferences for learner-system control models for the level of
help were similar, where 38 (22%) learners preferred the L model, 85 (49.4%)
preferred L-S, 43 (25%) preferred S-L, and only 6 (3.5%) chose S. By assigning
numerical values to these different learner-system control models (L: 0, L-S:
1, S-L: 2, S: 3), we performed a Pearson correlation between learners’ preferred
model and their self-efficacy. At α = 0.01 level, We found a significant correlation
between preferences for learner-system control models for the level of help (p
= 0.008), which was weak negative (r=-0.20). This indicate that learners with
higher self-efficacy desire more control for the level of help they receive from the
AI system. However, no statistically significant correlation was found between
the preferred type of help with learners’ self-efficacy.

6 Discussion
In this section, we answer our research questions and offer design guidelines
for designing help features and learner-system control mechanism for an “ideal”
AI-supported learning tool, for programming learning and beyond.
Desired help features. First, we provide design guidelines for abstract fea-
tures that are desired from concrete help functionalities.

Guideline 1: Seek explicit input on why learners need help, and
provide help based on learners’ need. Our findings indicate that learners
seek help from an AI-supported programming tool under three conditions: (a)
when they have a specific question, (b) after unsuccessful attempts to resolve
an issue, or (c) when they are unsure how to begin. These help-seeking reasons
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reveal the type of information and assistance learners expect from the tool. When
a specific question is in mind, learners anticipate a direct and precise answer.
When confronting issues in their code, learners expected explanations that would
guide them toward a resolution. If a learner is unsure of how to start, they expect
the tool to provide clear initial guidance. However, even experienced instructors
find it challenging to infer a learner’s intent only from their interactions with
the programming interface. Fig. 4 illustrates an example design that gathers
explicit student input with minimal interaction overhead by (a) highlighting the
area that is confusing for them or (b) asking learners to select an option that
describes their current confusion.

Fig. 4: An example implementation of Guideline 1 with low interaction overhead.

Guideline 2: Provide personalized feedback on a micro level and a
macro level. At the micro level, the tool should offer feedback specific to the
current problem, such as annotating a learner’s solution to highlight errors or
suggest improvements. At the macro level, the tool should address a learner’s
overall progress. For instance, it can suggest similar problems they have encoun-
tered previously and remind them how they resolved a similar issue before to
help them connect the dots.

Guideline 3: Support diverse needs and provide space for cus-
tomization. The perceived importance of many help features was very diverse.
While some participants repeatedly emphasized the value of an encouraging tool,
a considerable amount of learners rated it as less important. To accommodate
these differing preferences and avoid frustrating or alienating users, AI-supported
learning tools should offer customizable functionalities that adapt to individual
needs.

Guideline 4: Engage instructors by providing data access, control,
and involvement opportunities. Many instructors also mentioned their desire
to be more engaged with the system, instead of making the practice process an
independent interaction between learners and the system. The tool can provide
analytical feedback to the instructors and allow instructors to customize the type
of help available to learners. Additionally, the system could include shortcuts
that allow learners to directly request assistance from instructors.

Learner-System Control We identified four preferred models of learner-
system control (see table 1 and Fig. 2): full learner control (L), predominantly
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learner control with system suggestions (L-S),predominantly system control with
learner override (S-L), and full system control (S).

Guideline 5: Provide personalized learner-system dynamics. While
the PD sessions suggested similar preferences for both the type and level of
control, survey results revealed differences between them. Learners with higher
self-efficacy tended to desire greater control over the level of help provided,
while this pattern was not observed with the types of help. Although further
investigation is warranted, it appears that preferences regarding the level of
help may be more closely linked to cognitive factors such as self-efficacy and
metacognitive skills, whereas preferences for the type of help may be driven
more by individual taste.

Guideline 6: Create context-aware learner-system control mecha-
nism. Both learners and instructors voiced concerns about potential ‘gaming
the system’ behavior. They also noted that the context in which programming
practice occurs can significantly influence help-seeking behavior, especially for
the levels of help. For mandatory assignments where learners’ main goal is to
complete the problems, they are motivated to use help to reduce their time and
effort. For practicing their problem-solving skills and enhance their knowledge,
they often hesitate to request help, thinking that receiving help might negatively
affects their learning. As a result, AI learning tools should be context-aware and
adjust the range of control available for learners.

7 Limitations and Future Work
One limitation is that we only studied self-reported data, which means that our
work focused more on improving learners’ satisfaction and engagement instead of
learning outcome. Learner participants in the PD sessions had a slightly higher
average self-efficacy (mean=5.0) than the average responses from the survey
(mean=4.7), indicating potential selection bias. In terms of study design, al-
though we provided examples in the participatory design sessions to help speed
up learners’ brainstorming process, their choices or preferences during the ses-
sion could be affected by these examples. While we provided a model to describe
learner-system control dynamics, it is worth noting that there are factors not
discussed in our proposed model, e.g. the desired frequency for learners to make
control-related decisions, or the amount of information provided to learners re-
garding system decisions [34]. Future work can also explore more in using PD
to create AI-supported learning tools. Aside from having individual researcher-
participant design sessions, future work can explore workshop activities that
allow groups of learners to design culturally or community-relevant tools. Larger
workshops that engage learners and instructors at the same time can also provide
an opportunity for different stakeholders to communicate their thoughts directly.
Future work can also expand outside of programming education to understand
learners’ and instructors’ preferences in math or language learning.
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